Citation:
Avinash Attipalli, Raghuvaran Kendyala, Jagan Kurma, Jaya Vardhani Mamidala, Varun Bitkuri, Sunil Jacob Enokkaren, "Privacy Preservation in the Cloud: A Comprehensive Review of Encryption and Anonymization Methods" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 1, pp. 35-44, 2024.
Abstract:
Cloud computing offers scalable, pay-per-use services without requiring large infrastructure expenditures, it has completely changed how individuals and organizations access and manage massive computer resources. However, because cloud environments are open, shared, and dispersed, they present significant privacy and security concerns, including vulnerabilities in multi-tenant systems, data breaches, and unauthorized access. To safeguard sensitive data while maintaining its usefulness, this study examines privacy-preserving strategies, including homomorphic encryption, attribute-based encryption, and methods for data anonymization such as character masking, randomization, and k-anonymity. It also examines emerging solutions, such as searchable encryption and hybrid models that combine cryptographic and non-cryptographic approaches, to enhance data confidentiality and access control. The study highlights the limitations of current methods, such as computational overhead in encryption and re-identification risks in anonymization. It proposes future research directions, including AI-driven threat detection, quantum-resistant algorithms, and blockchain-based trust models. These advancements aim to address evolving security threats and ensure trustworthy, user-centric cloud computing ecosystems.
Keywords: Cloud Computing, Data Privacy, Data Security, Homomorphic Encryption, Attribute-Based Encryption, Data Anonymization, Character Masking, Access Control, Searchable Encryption, Privacy-Preserving Techniques, Blockchain, Quantum Computing.
References:
1. K. Kavitha and M. Punithavalli, “A Research on Privacy Preserving for Data I Storage in Cloud Center,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 9S2, pp. 315–320, Aug. 2019, doi: 10.35940/ijitee.I1065.0789S219.
2. B. O. Al-Amri, M. A. AlZain, J. Al-Amri, M. Baz, and M. Masud, “A Comprehensive Study of Privacy Preserving Techniques in Cloud Computing Environment,” Adv. Sci. Technol. Eng. Syst. J., vol. 5, no. 2, pp. 419–424, 2020, doi: 10.25046/aj050254.
3. K. Karthiban and S. Smys, “Privacy preserving approaches in cloud computing,” Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018, vol. 4, no. 04, pp. 462–467, 2018, doi: 10.1109/ICISC.2018.8399115.
4. J. Domingo-Ferrer, O. Farràs, J. Ribes-González, and D. Sánchez, “Privacy-preserving cloud computing on sensitive data: A survey of methods, products and challenges,” Comput. Commun., vol. 140–141, pp. 38–60, May 2019, doi: 10.1016/j.comcom.2019.04.011.
5. S. S. S. Neeli, “Serverless Databases: A Cost-Effective and Scalable Solution,” Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 6, p. 7, 2019.
6. [C. E. Okafor, J. Abdulrahman, C. Ihueze, and O. Celestine, “Optimal Design and Structural Analysis of Internally Pressurized Thin-Walled Shells,” Sch. J. Eng. Technol., vol. 5, no. SJET, pp. 416–426, 2017, doi: 10.21276/sjet.
7. S. Garg, “AI/ML Driven Proactive Performance Monitoring, Resource Allocation and Effective Cost Management in SaaS Operations,” Int. J. Core Eng. Manag., vol. 6, no. 6, pp. 263–273, 2019.
8. P. R. M. Rao, S. M. Krishna, and A. P. S. Kumar, “Privacy preservation techniques in big data analytics: a survey,” J. Big Data, vol. 5, no. 1, p. 33, Dec. 2018, doi: 10.1186/s40537-018-0141-8.
9. A. A. Rajan and A. A. Rajan, “Data Anonymization Techniques for Preserving Privacy in Public Release Data Model A Technical Review,” Int. J. Sci. Res. Comput. Sci. Eng., vol. 8, no. 1, pp. 58–62, 2020, doi: 10.26438/ijsrcse/v8i1.5862.
10. M. A. Hossain, A. Ullah, N. I. Khan, and M. F. Alam, “Design and Development of a Novel Symmetric Algorithm for Enhancing Data Security in Cloud Computing,” J. Inf. Secur., vol. 10, no. 04, pp. 199–236, 2019, doi: 10.4236/jis.2019.104012.
11. D. P, S. S, and V. S. D, “A comparative study on homomorphic encryption algorithms for data security in cloud environment,” Int. J. Electr. Eng. Technol., vol. 11, no. 2, pp. 129–138, 2020.
12. A. Kavya and S. Acharva, “A Comparative Study on Homomorphic Encryption Schemes in Cloud Computing,” in 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE, May 2018, pp. 112–116. doi: 10.1109/RTEICT42901.2018.9012261.
13. Y. Song, H. Wang, X. Wei, L. Wu, and M. Zhang, “Efficient Attribute-Based Encryption with Privacy-Preserving Key Generation and Its Application in Industrial Cloud,” Secur. Commun. Networks, vol. 2019, 2019, doi: 10.1155/2019/3249726.
14. L. Kacha and A. Zitouni, “An Overview on Data Security in Cloud Computing,” in Advances in Intelligent Systems and Computing, vol. 661, 2018, pp. 250–261. doi: 10.1007/978-3-319-67618-0_23.
15. Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, “Data Security and Privacy in Cloud Computing,” Int. J. Distrib. Sens. Networks, vol. 10, no. 7, Jul. 2014, doi: 10.1155/2014/190903.
16. P. Sun, “Security and privacy protection in cloud computing: Discussions and challenges,” J. Netw. Comput. Appl., vol. 160, Jun. 2020, doi: 10.1016/j.jnca.2020.102642.
17. Y. Liu, Y. Sun, J. Ryoo, S. Rizvi, and A. V. Vasilakos, “A survey of security and privacy challenges in cloud computing: Solutions and future directions,” J. Comput. Sci. Eng., vol. 9, no. 3, pp. 119–133, 2015, doi: 10.5626/JCSE.2015.9.3.119.
18. Y. Xu, L. Qi, W. Dou, and J. Yu, “Privacy-Preserving and Scalable Service Recommendation Based on SimHash in a Distributed Cloud Environment,” Complexity, vol. 2017, pp. 1–9, 2017, doi: 10.1155/2017/3437854.
19. H. R. Faragardi, “Ethical Considerations in Cloud Computing Systems,” in Proceedings of the IS4SI 2017 Summit DIGITALISATION FOR A SUSTAINABLE SOCIETY, Gothenburg, Sweden, 12–16 June 2017., Basel Switzerland: MDPI, Jun. 2017, p. 166. doi: 10.3390/IS4SI-2017-04016.
20. J. Singh and S. Sharma, “Review on Cloud Computing Security Issues and Encryption Techniques,” Int. J. Eng. Dev. Res., vol. 3, no. 2, pp. 1051–1053, 2015.
21. L. Rao, Q. Xie, and H. Zhao, “Data Sharing for Multiple Groups with Privacy Preservation in the Cloud,” in 2020 International Conference on Internet of Things and Intelligent Applications (ITIA), 2020, pp. 1–5. doi: 10.1109/ITIA50152.2020.9312318.
22. X. Wu, X. Xu, F. Dai, J. Gao, G. Ji, and L. Qi, “An Ensemble of Random Decision Trees with Personalized Privacy Preservation in Edge-Cloud Computing,” in 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), IEEE, Nov. 2020, pp. 779–786. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00134.
23. R. Kumar and M. P. S. Bhatia, “A Systematic Review of the Security in Cloud Computing: Data Integrity, Confidentiality and Availability,” in 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON), 2020, pp. 334–337. doi: 10.1109/GUCON48875.2020.9231255.
24. H. Shekhawat, S. Sharma, and R. Koli, “Privacy-preserving techniques for big data analysis in cloud,” in 2019 2nd International Conference on Advanced Computational and Communication Paradigms, ICACCP 2019, 2019. doi: 10.1109/ICACCP.2019.8882922.
25. S. Madan and P. Goswami, “A Privacy Preserving Scheme for Big Data Publishing in the Cloud using k-Anonymization and Hybridized Optimization Algorithm,” in 2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET), 2018, pp. 1–7. doi: 10.1109/ICCSDET.2018.8821140.
26. S. Hiremath and S. Kunte, “A novel data auditing approach to achieve data privacy and data integrity in cloud computing,” in 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017, pp. 306–310. doi: 10.1109/ICEECCOT.2017.8284517.
27. Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., & Gangineni, V. N. (2023). Scalable Deep Learning Algorithms with Big Data for Predictive Maintenance in Industrial IoT. International Journal of AI, BigData, Computational and Management Studies, 4(1), 88-97.
28. Chalasani, R., Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., & Bhumireddy, J. R. (2023). Detecting Network Intrusions Using Big Data-Driven Artificial Intelligence Techniques in Cybersecurity. International Journal of AI, BigData, Computational and Management Studies, 4(3), 50-60.
29. Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2023). A Review of Machine Learning Techniques for Financial Stress Testing: Emerging Trends, Tools, and Challenges. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 40-50.
30. Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2023). A Survey on Regulatory Compliance and AI-Based Risk Management in Financial Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 46-53.
31. Bhumireddy, J. R., Chalasani, R., Vangala, S. R., Kamarthapu, B., Polam, R. M., & Penmetsa, M. (2023). Predictive Machine Learning Models for Financial Fraud Detection Leveraging Big Data Analysis. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 34-43.
32. Gangineni, V. N., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Tyagadurgam, M. S. V. (2023). AI-Enabled Big Data Analytics for Climate Change Prediction and Environmental Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 71-79.
33. Polam, R. M. (2023). Predictive Machine Learning Strategies and Clinical Diagnosis for Prognosis in Healthcare: Insights from MIMIC-III Dataset. Available at SSRN 5495028.
34. Narra, B., Gupta, A., Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., & Patchipulusu, H. (2023). Predictive Analytics in E-Commerce: Effective Business Analysis through Machine Learning. Available at SSRN 5315532.
35. Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2023). Advanced Edge Computing Frameworks for Optimizing Data Processing and Latency in IoT Networks. JOETSR-Journal of Emerging Trends in Scientific Research, 1(1).
36. Patchipulusu, H. H. S., Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., & Buddula, D. V. K. R. (2023). Opportunities and Limitations of Using Artificial Intelligence to Personalize E-Learning Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(1), 128-136.
37. Madhura, R., Krishnappa, K. H., Shashidhar, R., Shwetha, G., Yashaswini, K. P., & Sandya, G. R. (2023, December). UVM Methodology for ARINC 429 Transceiver in Loop Back Mode. In 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-7). IEEE.
38. Shashidhar, R., Kadakol, P., Sreeniketh, D., Patil, P., Krishnappa, K. H., & Madhura, R. (2023, November). EEG data analysis for stress detection using k-nearest neighbor. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-7). IEEE.
39. KRISHNAPPA, K. H., & Trivedi, S. K. (2023). Efficient and Accurate Estimation of Pharmacokinetic Maps from DCE-MRI using Extended Tofts Model in Frequency Domain.
40. Krishnappa, K. H., Shashidhar, R., Shashank, M. P., & Roopa, M. (2023, November). Detecting Parkinson's disease with prediction: A novel SVM approach. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
41. Shashidhar, R., Balivada, D., Shalini, D. N., Krishnappa, K. H., & Roopa, M. (2023, November). Music Emotion Recognition using Convolutional Neural Networks for Regional Languages. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
42. Madhura, R., Krishnappa, K. H., Manasa, R., & Yashaswini, K. P. (2023, August). Slack Time Analysis for APB Timer Using Genus Synthesis Tool. In International Conference on ICT for Sustainable Development (pp. 207-217). Singapore: Springer Nature Singapore.
43. Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
44. Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
45. Madhura, R., Krutthika Hirebasur Krishnappa. et al., (2023). Slack time analysis for APB timer using Genus synthesis tool. 8th Edition ICT4SD International ICT Summit & Awards, Vol.3, 207–217. https://doi.org/10.1007/978-981-99-4932-8_20
46. Shashidhar, R., Aditya, V., Srihari, S., Subhash, M. H., & Krishnappa, K. H. (2023). Empowering investors: Insights from sentiment analysis, FFT, and regression in Indian stock markets. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 01–06. https://doi.org/10.1109/AIKIIE60097.2023.10390502
47. Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Mitra Penmetsa. Predictive models for early detection of chronic diseases in elderly populations: A machine learning perspective. Int J Comput Artif Intell 2023;4(1):71-79. DOI: 10.33545/27076571.2023.v4.i1a.169
48. HK, K. (2020). Design of Efficient FSM Based 3D Network on Chip Architecture. INTERNATIONAL JOURNAL OF ENGINEERING, 68(10), 67-73.
49. Krutthika, H. K. (2019, October). Modeling of Data Delivery Modes of Next Generation SOC-NOC Router. In 2019 Global Conference for Advancement in Technology (GCAT) (pp. 1-6). IEEE.
50. Ajay, S., Satya Sai Krishna Mohan G, Rao, S. S., Shaunak, S. B., Krutthika, H. K., Ananda, Y. R., & Jose, J. (2018). Source Hotspot Management in a Mesh Network on Chip. In VDAT (pp. 619-630).
51. Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv preprint arXiv:1001.3781.
52. Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. arXiv e-prints, arXiv-1001.
53. Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. Journal of Tianjin University Science and Technology, 54(11), 213–231. https://doi.org/10.5281/zenodo.5746712
54. Kuraku, Dr Sivaraju, et al. "Exploring how user behavior shapes cybersecurity awareness in the face of phishing attacks." International Journal of Computer Trends and Technology (2023).
55. Kuraku, D. S., & Kalla, D. (2023). Impact of phishing on users with different online browsing hours and spending habits. International Journal of Advanced Research in Computer and Communication Engineering, 12(10).
56. Kalla, D., & Samaah, F. (2023). Exploring Artificial Intelligence And Data-Driven Techniques For Anomaly Detection In Cloud Security. Available at SSRN 5045491.
57. Chandrasekaran, A., & Kalla, D. (2023). Heart disease prediction using chi-square test and linear regression. Comput. Sci. Inform. Technol., 13, 135-146.
58. Kalla, D. (2022). AI-Powered Driver Behavior Analysis and Accident Prevention Systems for Advanced Driver Assistance. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume, 1.
59. Rajiv, C., Mukund Sai, V. T., Venkataswamy Naidu, G., Sriram, P., & Mitra, P. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. J Contemp Edu Theo Artific Intel: JCETAI/102.
60. Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.
61. Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2020). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
62. Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
63. Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).
64. Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.
65. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.
66. Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies IRJEMS, 1(2).
67. Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2022). Blockchain Technology in Supply Chain and Logistics: A Comprehensive Review of Applications, Challenges, and Innovations. International Journal of Emerging Research in Engineering and Technology, 3(3), 99-107.
68. Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Polu, A. R. (2022). Revolutionizing Marketing Analytics: A Data-Driven Machine Learning Framework for Churn Prediction. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(2), 112-121.
69. Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS, WEAKNESSES, AND POTENTIAL APPLICATIONS.
70. Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
71. Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
6B New Colony, Edamalaipatti Pudur, Tiruchirappalli.
IJMSM
International Journal of Multidisciplinary on Science and Management [IJMSM] is a scholarly double-blind peer-reviewed journal published by Golden Sun-Rise.
2024 © Golden Sun-Rise.