

Golden Sun-Rise International Journal of Multidisciplinary on Science and Management ISSN: 3048-5037/ Volume 1 Issue 1 December 2024 / Page No: 35-44

Paper Id: IJMSM-V1I1P106 / Doi:10.71141/30485037/V1I1P106

Original Article

Privacy Preservation in the Cloud: A Comprehensive Review of Encryption and **Anonymization Methods**

Avinash Attipalli¹, Raghuvaran Kendyala², Jagan Kurma³, Jaya Vardhani Mamidala⁴, Varun Bitkuri⁵, Sunil Jacob Enokkaren⁶

> ¹University of Bridgeport, Department of Computer Science. ²University of Illinois at Springfield, Department of Computer Science. ³Christian Brothers University, Computer Information Systems. ⁴University of Central Missouri, Department of Computer Science. ⁵Stratford University ,Software Engineer. ⁶ADP, Solution Architect.

Received: 02 January 2024 Revised: 17 January 2024 Accepted: 29 January 2024 Published: 07 February 2024

Abstract - Cloud computing offers scalable, pay-per-use services without requiring large infrastructure expenditures, it has completely changed how individuals and organizations access and manage massive computer resources. However, because cloud environments are open, shared, and dispersed, they present significant privacy and security concerns, including vulnerabilities in multi-tenant systems, data breaches, and unauthorized access. To safeguard sensitive data while maintaining its usefulness, this study examines privacy-preserving strategies, including homomorphic encryption, attribute-based encryption, and methods for data anonymization such as character masking, randomization, and k-anonymity. It also examines emerging solutions, such as searchable encryption and hybrid models that combine cryptographic and non-cryptographic approaches, to enhance data confidentiality and access control. The study highlights the limitations of current methods, such as computational overhead in encryption and re-identification risks in anonymization. It proposes future research directions, including AI-driven threat detection, quantum-resistant algorithms, and blockchain-based trust models. These advancements aim to address evolving security threats and ensure trustworthy, user-centric cloud computing ecosystems.

Keywords - Cloud Computing, Data Privacy, Data Security, Homomorphic Encryption, Attribute-Based Encryption, Data Anonymization, Character Masking, Access Control, Searchable Encryption, Privacy-Preserving Techniques, Blockchain, Quantum Computing.

I. INTRODUCTION

Cloud computing has revolutionized how people and businesses access and utilize powerful computer resources. It enables the on-demand provisioning of computational power, storage, and networking capabilities, offering significant flexibility and cost efficiency through a pay-per-use model [1]. Users can leverage these resources without investing in dedicated infrastructure, accessing them virtually as though they reside on local machines. This paradigm is supported by virtualization, where software-defined virtual machines (VMs) host operating systems and applications, mimicking physical machines while being entirely abstract. Despite its numerous advantages, Cloud computing poses significant privacy and data security issues. Cloud environments host vast quantities of user data, ranging from personal information to sensitive enterprise content. If improperly secured, such data is vulnerable to breaches, unauthorized access, and malicious exploitation. One fundamental risk lies in this method, which works especially well for public cloud installations, as it processes data without disclosing personally identifiable information.

To mitigate such threats, various privacy-preserving mechanisms have been proposed. Chief among these are cryptographic techniques, such as encryption, which encode data to prevent unauthorized access [2]. While encryption is effective, it introduces considerable computational overhead and complex key management requirements, and may hinder functionalities such as querying and computation over encrypted data. Therefore,

while widely used, encryption alone may not suffice for all cloud service scenarios. An alternative or complementary strategy is anonymization, which alters data while maintaining its analytical value to prevent the identification of specific people or sensitive characteristics. In public cloud installations, this method works especially well, as it enables data processing without disclosing personally identifiable information. For example, anonymized datasets can be hosted and analyzed in the cloud, with the original identities securely mapped only in trusted local environments [3]. Recent studies have also explored non-cryptographic methods such as data splitting and distribution across multiple servers, which reduce dependency on encryption while still providing a high level of data protection. These approaches aim to preserve the cost-saving and performance benefits of cloud computing without sacrificing data privacy.

Although various techniques for preserving privacy in the cloud have been introduced, ranging from encryption and access control to anonymization and data masking, a comprehensive survey that encompasses both cryptographic and non-cryptographic solutions is lacking [4]. The purpose of this study is to address this gap by conducting a comprehensive examination of the most recent privacy-preserving techniques specifically designed for cloud environments. It analyzes the effectiveness, limitations, and practical implications of existing solutions. It provides guidelines for Modern cloud computing infrastructures that have changing requirements, therefore improving privacy methods to meet those needs.

A. Structure of the Paper

This paper is organized as follows: Section II provides an overview of privacy preservation techniques. Section III addresses the risks to cloud security and privacy. Information stored in storage. The literature and case studies are reviewed in Section IV. Included are findings and suggestions for more research in Section V, Conclusions.

II. PRIVACY PRESERVATION TECHNIQUES OVERVIEW

Privacy Preservation Techniques in Cloud Computing involve safeguarding sensitive data using methods like encryption and anonymization. Encryption ensures data confidentiality by converting data into unreadable formats, while anonymization removes personally identifiable information (PII) to protect user identity. Advanced techniques include homomorphic encryption for computing on encrypted data and differential privacy for statistical analysis with added noise. Hybrid models often combine both approaches for stronger protection. These methods help balance security, usability, and performance in cloud environments.

A. Data Anonymization Methods

Data anonymization permanently obscures data while protecting privacy. Techniques for anonymization have been developed in the fields of privacy preservation and statistical disclosure control. Data publishing is the process of providing sensitive information to an unaffiliated third party, ensuring it remains analytically valuable for future applications without disclosing information that could be used to identify specific individuals [4][5]. An approach that shows promise for protecting privacy is data anonymization. To ensure data anonymity and preserve data privacy, the anonymization procedure is applied to the data before transferring it to a third party, such as a medical researcher, as illustrated in Figure 1.

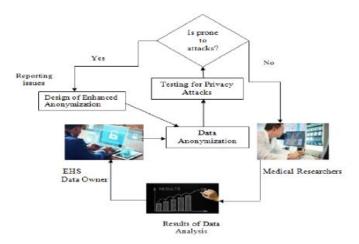


Figure 1. Data Anonymization Process Basic Architecture

a) k-Anonymity

k-Anonymity could serve as a formal protection paradigm. If an attempt is made to detect the data using a region unit, the goal is to make each record in an illustrated variety (k) records ambiguous. An arrangement of data is k-anonymised if there are always k-1 elective records that fit a given set of attributes for any record having that arrangement. They can be any of the following types of qualities. Example: If a dataset contains a person's age, gender, and zip code, the dataset would be anonymized by ensuring that for each combination of these attributes, there are at least k individuals with the same values. Use Cases: k-Anonymity is widely used in datasets with multiple quasi-identifiers(attributes that can indirectly identify an individual, like age, gender, or zip code)and is especially relevant in healthcare and census data [6].

b) Randomization Technique:

A probability distribution is typically used to add noise to the data, a technique known as Randomization. Randomization is used in sentiment analysis, surveys, and more. It is not necessary to be aware of other records in the data to use randomization. It is applicable during the pre-processing and data gathering phases. Randomization eliminates the need to optimize for anonymization. Unfortunately, as our experiment outlined below demonstrates, randomization cannot be applied to large datasets due to time complexity and data utility.

Executed a MapReduce Job on 10,000 entries supplied into the Hadoop Distributed File System from an employee database [7]. Conducted experiments to categorise the staff according to their age and wage levels. To implement randomization, they randomly added 5,000 records to our database, increasing the total to 20,000 records. After executing the MapReduce operation, they made the following observations.

- As the amount of data increased, a greater number of mappers and reducers were utilized.
- The results were noticeably different both before and after the randomization process.
- Despite randomization, certain outlier records are still susceptible to attacks from adversaries.
- Especially when it comes to attribute disclosure, randomization might not be the best choice for privacy preservation because people do not value data utility more highly than privacy [8].

c) Character Masking

The process of changing a data value's characters by adding a constant symbol, such "*" or "x," is called character masking. Certain elements in the attribute are concealed, while others are left open. Character masking can be either constant or changeable, depending on the kind of property. Swap out the relevant characters with a predetermined symbol when concealing a portion of the data value. This is a string of characters, and it is adequate to achieve the necessary degree of anonymity when part of the data value is hidden. The results of character masking in column F of the sample dataset are displayed in Table I [9]

Table 1. Character Masking on Attribute Postal Code (F)

Postal code						
600***						
621***						
627***						
651***						

B. Common Encryption Algorithms Used in Cloud Storage

If symmetric encryption is used, both the sender and the recipient may encrypt and decrypt communications using the same key. Cloud computing uses symmetric algorithms, such as the Advanced Encryption Standard (AES) and the Data Encryption Standard (DES). Asymmetric encryption uses separate but related public and private keys. The encryption process uses the public key, while the decryption process uses the private key. With a private key, only the verified receiver can decipher the message. In cloud computing, asymmetric algorithms such as the Homomorphic encryption algorithm or the Classification Attribute-Based Encryption model are used. Hybrid encryption, on the other hand, combines symmetric and asymmetric encryption for maximum security [10].

a) Homomorphic Encryption

Only the client has access to the secret key, which is utilized by Homomorphic Encryption systems to execute actions on encrypted data without decryption. Decrypting an operation's output is identical to performing the same computation on the raw data. The goal of homomorphic encryption is to encrypt a collection of ciphertexts in such a way that the decrypted result is identical to the result of an operation on the plaintexts [11].

C. Types Of Homomorphic Encryption(HE)

A homomorphism is a mapping from one set to another that keeps the relationships between members of the original set in the new set. Homomorphic encryption refers to an operation on a set of ciphertexts that produces decryption results that are identical to those of an operation on the plaintexts. Three distinct types of HE schemes may be neatly classified according to the maximum number of operations that are permissible on the encrypted data:

- **Partially Homomorphic Encryption (PHE):** In PHE, there is a single operation type that may be executed an infinite number of times.
- **Somewhat Homomorphic Encryption (SWHE):** This permits a limited number of times for certain types of operations. Schemes for SWHE enable students to multiply and add. However, before the first FHE scheme, SWHE methods were developed; however, the ciphertext sizes increase with each homomorphic operation, resulting in a limitation on the maximum number of permissible operations.
- **Fully Homomorphic Encryption (FHE):** FHE allows for the execution of an unlimited number of operations an infinite number of times. In 2009, Craig Gentry created the first practical and workable Fully Homomorphic Encryption (FHE) method. This method is capable of computing any function on encrypted data by evaluating an infinite number of additions and multiplications. In addition to describing the technique, it provides a robust foundation for obtaining FHE and is based on mathematical ideal lattices [12].

a) Classification of Attribute-Based Encryption Model

Attribute-based encryption is a type of public key encryption referred to as one-to-many public key encryption. Decryption of the ciphertext is restricted to users whose characteristics match the encryptor's specified access policy. An idea with roots in identity-based encryption. Encryption is the process of changing data from its original format into an incomprehensible code. The process of returning encrypted data to its original Only after the data has been encrypted can the authorized party decode it. format is known as decryption. Consequently, encryption makes sure that the information is safe and private. There is a plethora of encryption methods out there, each with its own set of benefits. An established method for cloud computing is attributebased encryption. Some attribute-based encryption methods have drawbacks that require examination. Most of the time, only the characteristics are encrypted, rather than the entire dataset, using attribute-based encryption. Cryptography in ABE is simple, secure, and cost-effective compared to other methods. Because the qualities, rather than the data itself, are included in the encrypted data, the ABE is secure. No data is ever compromised in the event of an attack. Attribute-based encryption has the disadvantage of being expensive to decrypt data. The program is made secure by using attribute-based encryption. The ABE outperforms competing encryption algorithms in terms of performance. Therefore, going forward, all cloud apps will use attribute-based encryption. Critical and real-time applications are being relocated to the cloud for use in next-generation computing. Figure 2 illustrates the various forms of ABE and their corresponding classifications [13].

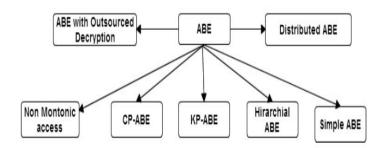


Figure 2. Classification of Attribute-Based Encryption

D. Importance of Data Privacy and Security in the Cloud

Data security is a problem that affects all technology. Nevertheless, when used in an unregulated setting such as cloud computing, it presents a major challenge. There are security concerns associated with any IT system, but cloud computing introduces additional ones that must be considered separately. Generally, these dangers are prevalent in shared, dispersed, and open settings. Isolating pre-existing issues from those introduced by Cloud Computing is crucial for effective risk analysis. This paper addresses only problems associated with data and the Cloud.

Data stored on the service provider's infrastructure is more susceptible to security breaches than data saved on conventional infrastructure for three primary reasons: (1) data is accessible over the internet; (2) data from

multiple users shares the same physical infrastructure; and (3) data is transferred to the cloud from other locations [14].

E. Data Confidentiality

Ensuring data congruence is crucial for clients who wish to store sensitive or confidential data in the cloud. Making the cloud more dependable and trustworthy is one method to address issues with access control and authentication in cloud computing that impact data integrity:

- **Homomorphic Encryption:** Encryption is frequently used to guarantee data secrecy. One type of suggested encryption scheme is homomorphic encryption. Furthermore, the entire process does not have to decrypt the data, guaranteeing consistency between the encryption results of the clear operation and the outputs of the algebraic operation on the ciphertext. The incompatibility between data and data activities in the cloud can be resolved using this method.
- **Encrypted Search and Database:** The use of restricted homomorphic encryption algorithms in cloud systems is being examined by researchers, as homomorphic encryption is considered to be hazardous. Encrypted search, a popular privacy-preserving multi-keyword ranked search method, was introduced to search encrypted cloud data and rate the search results without endangering user privacy.
- **Hybrid Technique:** A hybrid approach that combines key sharing and authentication methods is recommended for data confidentiality and integrity. The use of robust authentication and key-sharing methods can enhance the security of user-cloud service provider interactions. Cloud service providers and consumers can safely distribute keys by using the RSA public key algorithm [15].

III. SECURITY AND PRIVACY THREATS IN CLOUD DATA STORAGE

- Access control in cloud computing: Access control is a crucial technique to ensure that only authorized
 users can access specific data and resources in the cloud. It enforces security policies by verifying
 identities and assigning permissions based on roles, attributes, or policies. Effective access control
 prevents unauthorized access, protects sensitive information, and supports data privacy, integrity, and
 regulatory compliance in multi-user cloud environments.
- ABE in cloud computing: One encryption method that works well with cloud computing is ABE, which
 may also provide privacy protection when exchanging data. Numerous ABEs have been proposed by
 academics for various participating companies in cloud computing systems to secure users' privacysensitive data. ABE enables the encryption of cloud storage data and provides fine-grained access control.
 Attribute encryption is extremely relevant to secure cloud-based data sharing systems due to its four
 fundamental characteristics: fine-grained access control, scalability, flexibility in defining access policies,
 and resistance to collusion attacks.
- Searchable encryption: A cloud service's data frequently takes the form of ciphertext. A crucial question is how to protect a cloud service's privacy and security without compromising its functionality. Searchable encryption (SE) technology is a highly suitable approach for protecting cloud private data as a crucial network security technique, as it enables keyword-based retrieval of ciphertexts. A balance between usability and security in cloud environments can be achieved through searchable encryption, which combines symmetric and asymmetric encryption with secure indexing strategies, access control policies, and cryptographic protocols to enhance data confidentiality and facilitate efficient query operations.
- **Combination technologies in cloud privacy:** investigated and assessed the research on search encryption, attribute encryption, and access restriction as methods of protecting cloud computing privacy. Because cloud computing is a dynamic and complex environment with high information aggregation and research advancements, better privacy security protection is obtained by integrating numerous related technologies, including access control, trust, and ABE [16].

A. Data Breaches

Multi-tenant virtualized environments contain a significant amount of potentially sensitive data and are therefore of considerable interest to hackers. Any vulnerability in a single virtual machine may cause vulnerability in other, separate virtual machines on the same host and lead to disclosure of sensitive data to a third party:

a) Unauthorized Access

Data is stored securely because access control ensures that only authorized people have access. It consists of authentication, authorisation, and accounting. To define roles and rules effectively and provide sophisticated access control systems, several research initiatives have been undertaken. The Role-Based Multi-Tenancy Access Control (RBMTAC) paradigm, for instance, is designed to effectively control a user's access authorization, offering

data separation and independent applications. The user's identity and relevant duties are ascertained through identity management [17]. The authors allowed the data owner to select unreliable cloud servers to do the majority of the compute activities required for fine-grained data access control without revealing the underlying data's contents. Also, they use data attributes to create and implement access rules. There are other recommendations for physical methods to ensure access control to the virtual machines or hypervisors. For example, the administrator needs a hardware token to launch the hypervisor.

b) Scalable Service

To their knowledge, very few of the research articles that are currently available take into account the privacy-preservation issues that arise when services are recommended in a dispersed cloud context. This article explains the research relevance of the privacy-preserving service recommendation problem and formalises it [18].

c) Ethical Concerns in Cloud Computing

To mitigate the ethical dilemma in the system, ethics is employed. This may be achieved by cloud rule makers and client-side T&C agreement negotiators taking into account as many scenarios as possible and providing explicit advice to indicate which ones exist. The cloud provider will likely notify you if someone attempts to access your data, regardless of whether they are successful, according to the agreed-upon level of protection, for instance. If someone else has already viewed a portion of your data, the provider may alert you to the possibility of data theft even though there may not be concrete proof that the data has been accessed. It remains admirable to educate clients about ethics, even if the contract does not expressly address this. [19].

d) Challenges of Encryption in Cloud Computing

A variety of encryption methods and approaches are employed to enhance cloud computing security, providing users with the assurance to store their data securely in the cloud. In the present study, they reviewed several data encryption techniques. Bi-directional DNA encryption was described by Amit et al. as a method to enhance the security of cloud computing. Nevertheless, no algorithm now in use concentrates on cloud computing users who do not speak English, in addition to those who utilise the ASCII character set. However, the security of cloud computing may be improved by using this method with Unicode letters. This study explained the various stages of transforming data into a different format to encrypt it with greater complexity [20].

e) Anonymization Approach for Privacy Preserving in Cloud Computing

Suggested a novel method for ensuring the anonymity of cloud computing services. The data is anonymised using this algorithm before being sent to service providers. According to the authors, this approach to user privacy protection is safer and more adaptable than cryptography methods. However, each cloud service provider uses a different anonymisation technique. Therefore, in cloud computing systems that are networked, the clouds may work together to quickly re-identify the original data. Moreover, the writers do not assess or validate the effectiveness of their approach.

IV. LITERATURE REVIEW

This section presents earlier studies on Techniques for anonymisation and encryption to protect privacy in cloud computing settings. Table II provides a structured comparison of previous research, focusing on symmetric and asymmetric encryption, homomorphic encryption, and anonymization methods such differential privacy and k-anonymity, as well as how they apply and the security issues they present in cloud-based systems. Rao, Xie and Zhao (2020) proposed a cloud-based data sharing system that protects privacy for numerous groups. By utilizing group signatures, broadcast encryption, and encryption based on ciphertext-policy attributes, this approach creates a versatile access control framework that facilitates anonymous data exchange within and across groups. Additionally, our method facilitates effective user revocation. Extensive studies and trials demonstrate the scheme's security and effectiveness [21].

Wu et al. (2020) suggested a private random decision tree-based architecture for data mining in ECC that protects privacy. The architecture offers an effective data utility in addition to a robust privacy guarantee. First, for private random DT in ECC, offer a paradigm based on differential privacy. Explain the particular algorithms and the related work that each participant needs to finish after that. Subsequently, examine the primary determinants of privacy and utility, and execute additional improvements to boost utility [22]. Kumar and Bhatia (2020) note that the main issue that worsens as the number of users increases is protecting privacy. This paper thoroughly examines the existing methods for cloud storage security in the context of cloud computing. This article provides an overview of cloud computing and its associated security issues. The necessary security requirements, such as data integrity, availability, and confidentiality. Security vulnerabilities in recent cloud

security techniques are evaluated. The method's possible future use is evaluated, along with the challenges associated with cloud security [23].

Shekhawat, Sharma, and Koli (2019) explain three methods attribute-based encryption, homomorphic encryption, and order-preserving encryption to ensure data integrity and confidentiality. These methods protect data privacy while preserving the effectiveness and scalability of large datasets for decision-making, and they are most effective when utilized on the cloud [24]. Madan and Goswami (2018) developed the k-anonymization model to protect cloud privacy. The suggested strategy is powered by Dragon Particle Swarm Optimization (Dragon-PSO), a recently created optimization model that blends the Particle Swarm Optimization (PSO) algorithm with the Dragonfly Algorithm (DA). By calculating the fitness function for the proposed Dragon-PSO algorithm, the proposed plan achieves high values for both privacy and utility. Information Loss and Classification Accuracy are the two criteria used to assess the suggested system [25].

Hiremath and Kunte (2017) The objective is to provide a Party Auditor (TPA)-based effective public auditing method for confirming the accuracy of cloud data. AES is used for encryption in the suggested auditing approach, and Data integrity checks employ the Secure Hash Algorithm (SHA-2) to give message digests or verification information. The research demonstrates that the suggested plan is demonstrably safe and that TPA audits files of varying sizes in a consistent amount of time [26].

Table 2. Comparative Analysis of Privacy Preservation in the Cloud

Table 2. Comparative Analysis of Trivacy Treservation in the cloud					
Reference	Focus Area	Key Findings	Challenges	Key Contribution	
Rao, Xie and	Multi-group	Supports intra/cross-group	Efficient user	Flexible access control	
Zhao (2020)	data sharing	anonymous access using	revocation;	with anonymity and	
	with privacy	group signature, CP-ABE, and	complex access	revocation in cloud	
		broadcast encryption	policies		
Wu et al.	Privacy-	In ECC, it suggests DP-based	Utility vs. privacy	Framework for secure	
(2020)	preserving data	private random decision	trade-off;	data mining with	
	mining	trees that strike a	performance	differential privacy	
		compromise between privacy	overhead		
		and usefulness			
Kumar and	Review of cloud	Reviews key security	Evolving threat	Highlights trends,	
Bhatia (2020)	storage security	requirements (integrity,	landscape and	methodologies, and	
		availability, confidentiality);	compliance	open research	
		surveys recent cloud methods	challenges	directions	
Shekhawat,	Encryption	Describes homomorphic,	Scalability with	Efficient encryption-	
Sharma and	techniques for	order-preserving, and ABE	big data;	based methods for	
Koli (2019)	privacy	schemes for cloud and big	computation cost	secure, scalable cloud	
		data		storage	
Madan and	k-Anonymity	Uses Dragon-PSO to enhance	Optimization	Optimization-based	
Goswami	via optimization	privacy with low information	model complexity;	anonymization with	
(2018)		loss and good accuracy	balancing utility	strong privacy-utility	
				balance	
Hiremath and	Public auditing	AES and SHA-2-based scheme	Secure audit	Lightweight auditing	
Kunte (2017)	in cloud storage	with constant-time TPA	without exposing	using cryptography	
		auditing	data; trusted TPA	with integrity	
				guarantee	

V. CONCLUSION AND FUTURE WORK

Cloud computing offers scalable, cost-effective access to vast computing resources, allowing individuals and businesses to utilize services like processing, data storage, and application hosting without having to make large infrastructure investments. However, preserving data security and privacy in cloud settings is a constant battle due to problems such as data breaches, unauthorized access, and vulnerabilities in multi-tenant systems. Methods such as data anonymisation, attribute-based encryption, and homomorphic encryption offer reliable ways to safeguard private data without sacrificing usability. Despite their strengths, cryptographic methods often introduce computational overhead, whereas non-cryptographic approaches, such as anonymization, may face limitations in interconnected cloud systems. Ongoing research and hybrid techniques that combine encryption, access control, and anonymization are required to manage evolving privacy and security threats and ensure the dependability and legitimacy of cloud computing for a variety of applications.

Future advancements in cloud computing are expected to be significant due to new technologies and evolving user demands, particularly in the areas of privacy and security. Research will likely focus on developing more effective cryptographic methods, including fully homomorphic encryption (FHE), to overcome current performance and cost constraints and enable computation on encrypted data with minimal computational overhead. Non-cryptographic methods, such as advanced data anonymization and differential privacy, are expected to evolve to better balance data utility and privacy, particularly in interconnected cloud environments where re-identification risks persist. The integration of AI and ML will enhance real-time threat detection, access control, and automated enforcement of privacy policies, thereby improving security in multi-tenant systems.

VI. REFERENCES

- 1. K. Kavitha and M. Punithavalli, "A Research on Privacy Preserving for Data I Storage in Cloud Center," *Int. J. Innov. Technol. Explor. Eng.*, vol. 8, no. 9S2, pp. 315–320, Aug. 2019, doi: 10.35940/ijitee.I1065.0789S219.
- B. O. Al-Amri, M. A. AlZain, J. Al-Amri, M. Baz, and M. Masud, "A Comprehensive Study of Privacy Preserving Techniques in Cloud Computing Environment," Adv. Sci. Technol. Eng. Syst. J., vol. 5, no. 2, pp. 419–424, 2020, doi: 10.25046/aj050254.
- 3. K. Karthiban and S. Smys, "Privacy preserving approaches in cloud computing," *Proc. 2nd Int. Conf. Inven. Syst. Control. ICISC 2018*, vol. 4, no. 04, pp. 462–467, 2018, doi: 10.1109/ICISC.2018.8399115.
- 4. J. Domingo-Ferrer, O. Farràs, J. Ribes-González, and D. Sánchez, "Privacy-preserving cloud computing on sensitive data: A survey of methods, products and challenges," *Comput. Commun.*, vol. 140–141, pp. 38–60, May 2019, doi: 10.1016/j.comcom.2019.04.011.
- 5. S. S. S. Neeli, "Serverless Databases: A Cost-Effective and Scalable Solution," Int. J. Innov. Res. Eng. Multidiscip. Phys. Sci., vol. 7, no. 6, p. 7, 2019.
- 6. [C. E. Okafor, J. Abdulrahman, C. Ihueze, and O. Celestine, "Optimal Design and Structural Analysis of Internally Pressurized Thin-Walled Shells," Sch. J. Eng. Technol., vol. 5, no. SJET, pp. 416–426, 2017, doi: 10.21276/sjet.
- 7. S. Garg, "AI/ML Driven Proactive Performance Monitoring, Resource Allocation and Effective Cost Management in SaaS Operations," *Int. J. Core Eng. Manag.*, vol. 6, no. 6, pp. 263–273, 2019.
- 8. P. R. M. Rao, S. M. Krishna, and A. P. S. Kumar, "Privacy preservation techniques in big data analytics: a survey," *J. Big Data*, vol. 5, no. 1, p. 33, Dec. 2018, doi: 10.1186/s40537-018-0141-8.
- 9. A. A. Rajan and A. A. Rajan, "Data Anonymization Techniques for Preserving Privacy in Public Release Data Model A Technical Review," *Int. J. Sci. Res. Comput. Sci. Eng.*, vol. 8, no. 1, pp. 58–62, 2020, doi: 10.26438/ijsrcse/v8i1.5862.
- 10. M. A. Hossain, A. Ullah, N. I. Khan, and M. F. Alam, "Design and Development of a Novel Symmetric Algorithm for Enhancing Data Security in Cloud Computing," *J. Inf. Secur.*, vol. 10, no. 04, pp. 199–236, 2019, doi: 10.4236/jis.2019.104012.
- 11. D. P, S. S, and V. S. D, "A comparative study on homomorphic encryption algorithms for data security in cloud environment," *Int. J. Electr. Eng. Technol.*, vol. 11, no. 2, pp. 129–138, 2020.
- 12. A. Kavya and S. Acharva, "A Comparative Study on Homomorphic Encryption Schemes in Cloud Computing," in 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), IEEE, May 2018, pp. 112–116. doi: 10.1109/RTEICT42901.2018.9012261.
- 13. Y. Song, H. Wang, X. Wei, L. Wu, and M. Zhang, "Efficient Attribute-Based Encryption with Privacy-Preserving Key Generation and Its Application in Industrial Cloud," *Secur. Commun. Networks*, vol. 2019, 2019, doi: 10.1155/2019/3249726.
- 14. L. Kacha and A. Zitouni, "An Overview on Data Security in Cloud Computing," in *Advances in Intelligent Systems and Computing*, vol. 661, 2018, pp. 250–261. doi: 10.1007/978-3-319-67618-0_23.
- 15. Y. Sun, J. Zhang, Y. Xiong, and G. Zhu, "Data Security and Privacy in Cloud Computing," *Int. J. Distrib. Sens. Networks*, vol. 10, no. 7, Jul. 2014, doi: 10.1155/2014/190903.
- 16. P. Sun, "Security and privacy protection in cloud computing: Discussions and challenges," J. Netw. Comput. Appl., vol. 160, Jun. 2020, doi: 10.1016/j.jnca.2020.102642.
- 17. Y. Liu, Y. Sun, J. Ryoo, S. Rizvi, and A. V. Vasilakos, "A survey of security and privacy challenges in cloud computing: Solutions and future directions," *J. Comput. Sci. Eng.*, vol. 9, no. 3, pp. 119–133, 2015, doi: 10.5626/JCSE.2015.9.3.119.
- 18. Y. Xu, L. Qi, W. Dou, and J. Yu, "Privacy-Preserving and Scalable Service Recommendation Based on SimHash in a Distributed Cloud Environment," *Complexity*, vol. 2017, pp. 1–9, 2017, doi: 10.1155/2017/3437854.
- 19. H. R. Faragardi, "Ethical Considerations in Cloud Computing Systems," in *Proceedings of the IS4SI 2017 Summit DIGITALISATION FOR A SUSTAINABLE SOCIETY, Gothenburg, Sweden, 12–16 June 2017.*, Basel Switzerland: MDPI, Jun. 2017, p. 166. doi: 10.3390/IS4SI-2017-04016.
- 20. J. Singh and S. Sharma, "Review on Cloud Computing Security Issues and Encryption Techniques," *Int. J. Eng. Dev. Res.*, vol. 3, no. 2, pp. 1051–1053, 2015.
- 21. L. Rao, Q. Xie, and H. Zhao, "Data Sharing for Multiple Groups with Privacy Preservation in the Cloud," in *2020 International Conference on Internet of Things and Intelligent Applications (ITIA)*, 2020, pp. 1–5. doi: 10.1109/ITIA50152.2020.9312318.
- 22. X. Wu, X. Xu, F. Dai, J. Gao, G. Ji, and L. Qi, "An Ensemble of Random Decision Trees with Personalized Privacy Preservation in Edge-Cloud Computing," in 2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics), IEEE, Nov. 2020, pp. 779–786. doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics50389.2020.00134.

- 23. R. Kumar and M. P. S. Bhatia, "A Systematic Review of the Security in Cloud Computing: Data Integrity, Confidentiality and Availability," in *2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON)*, 2020, pp. 334–337. doi: 10.1109/GUCON48875.2020.9231255.
- 24. H. Shekhawat, S. Sharma, and R. Koli, "Privacy-preserving techniques for big data analysis in cloud," in *2019 2nd International Conference on Advanced Computational and Communication Paradigms, ICACCP 2019*, 2019. doi: 10.1109/ICACCP.2019.8882922.
- 25. S. Madan and P. Goswami, "A Privacy Preserving Scheme for Big Data Publishing in the Cloud using k-Anonymization and Hybridized Optimization Algorithm," in *2018 International Conference on Circuits and Systems in Digital Enterprise Technology (ICCSDET)*, 2018, pp. 1–7. doi: 10.1109/ICCSDET.2018.8821140.
- 26. S. Hiremath and S. Kunte, "A novel data auditing approach to achieve data privacy and data integrity in cloud computing," in 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), 2017, pp. 306–310. doi: 10.1109/ICEECCOT.2017.8284517.
- 27. Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., & Gangineni, V. N. (2023). Scalable Deep Learning Algorithms with Big Data for Predictive Maintenance in Industrial IoT. International Journal of AI, BigData, Computational and Management Studies, 4(1), 88-97.
- 28. Chalasani, R., Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., & Bhumireddy, J. R. (2023). Detecting Network Intrusions Using Big Data-Driven Artificial Intelligence Techniques in Cybersecurity. International Journal of AI, BigData, Computational and Management Studies, 4(3), 50-60.
- 29. Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2023). A Review of Machine Learning Techniques for Financial Stress Testing: Emerging Trends, Tools, and Challenges. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 40-50.
- 30. Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2023). A Survey on Regulatory Compliance and AI-Based Risk Management in Financial Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 46-53.
- 31. Bhumireddy, J. R., Chalasani, R., Vangala, S. R., Kamarthapu, B., Polam, R. M., & Penmetsa, M. (2023). Predictive Machine Learning Models for Financial Fraud Detection Leveraging Big Data Analysis. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 34-43.
- 32. Gangineni, V. N., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Tyagadurgam, M. S. V. (2023). AI-Enabled Big Data Analytics for Climate Change Prediction and Environmental Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 71-79.
- 33. Polam, R. M. (2023). Predictive Machine Learning Strategies and Clinical Diagnosis for Prognosis in Healthcare: Insights from MIMIC-III Dataset. Available at SSRN 5495028.
- 34. Narra, B., Gupta, A., Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., & Patchipulusu, H. (2023). Predictive Analytics in E-Commerce: Effective Business Analysis through Machine Learning. Available at SSRN 5315532.
- 35. Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2023). Advanced Edge Computing Frameworks for Optimizing Data Processing and Latency in IoT Networks. JOETSR-Journal of Emerging Trends in Scientific Research, 1(1).
- 36. Patchipulusu, H. H. S., Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., & Buddula, D. V. K. R. (2023). Opportunities and Limitations of Using Artificial Intelligence to Personalize E-Learning Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(1), 128-136.
- 37. Madhura, R., Krishnappa, K. H., Shashidhar, R., Shwetha, G., Yashaswini, K. P., & Sandya, G. R. (2023, December). UVM Methodology for ARINC 429 Transceiver in Loop Back Mode. In 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-7). IEEE.
- 38. Shashidhar, R., Kadakol, P., Sreeniketh, D., Patil, P., Krishnappa, K. H., & Madhura, R. (2023, November). EEG data analysis for stress detection using k-nearest neighbor. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-7). IEEE.
- 39. KRISHNAPPA, K. H., & Trivedi, S. K. (2023). Efficient and Accurate Estimation of Pharmacokinetic Maps from DCE-MRI using Extended Tofts Model in Frequency Domain.
- 40. Krishnappa, K. H., Shashidhar, R., Shashank, M. P., & Roopa, M. (2023, November). Detecting Parkinson's disease with prediction: A novel SVM approach. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
- 41. Shashidhar, R., Balivada, D., Shalini, D. N., Krishnappa, K. H., & Roopa, M. (2023, November). Music Emotion Recognition using Convolutional Neural Networks for Regional Languages. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
- 42. Madhura, R., Krishnappa, K. H., Manasa, R., & Yashaswini, K. P. (2023, August). Slack Time Analysis for APB Timer Using Genus Synthesis Tool. In International Conference on ICT for Sustainable Development (pp. 207-217). Singapore: Springer Nature Singapore.
- Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
- 44. Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
- 45. Madhura, R., Krutthika Hirebasur Krishnappa. et al., (2023). Slack time analysis for APB timer using Genus synthesis tool. 8th Edition ICT4SD International ICT Summit & Awards, Vol.3, 207–217. https://doi.org/10.1007/978-981-99-4932-8_20

- 46. Shashidhar, R., Aditya, V., Srihari, S., Subhash, M. H., & Krishnappa, K. H. (2023). Empowering investors: Insights from sentiment analysis, FFT, and regression in Indian stock markets. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 01–06. https://doi.org/10.1109/AIKIIE60097.2023.10390502
- 47. Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Mitra Penmetsa. Predictive models for early detection of chronic diseases in elderly populations: A machine learning perspective. Int J Comput Artif Intell 2023;4(1):71-79. DOI: 10.33545/27076571.2023.v4.i1a.169
- 48. HK, K. (2020). Design of Efficient FSM Based 3D Network on Chip Architecture. INTERNATIONAL JOURNAL OF ENGINEERING, 68(10), 67-73.
- 49. Krutthika, H. K. (2019, October). Modeling of Data Delivery Modes of Next Generation SOC-NOC Router. In *2019 Global Conference for Advancement in Technology (GCAT)* (pp. 1-6). IEEE.
- 50. Ajay, S., Satya Sai Krishna Mohan G, Rao, S. S., Shaunak, S. B., Krutthika, H. K., Ananda, Y. R., & Jose, J. (2018). Source Hotspot Management in a Mesh Network on Chip. In *VDAT* (pp. 619-630).
- 51. Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. *arXiv* preprint *arXiv*:1001.3781.
- 52. Gopalakrishnan Nair, T. R., & Krutthika, H. K. (2010). An Architectural Approach for Decoding and Distributing Functions in FPUs in a Functional Processor System. *arXiv e-prints*, arXiv-1001.
- 53. Krutthika H. K. & A.R. Aswatha. (2021). Implementation and analysis of congestion prevention and fault tolerance in network on chip. *Journal of Tianjin University Science and Technology, 54*(11), 213–231. https://doi.org/10.5281/zenodo.5746712
- 54. Kuraku, Dr Sivaraju, et al. "Exploring how user behavior shapes cybersecurity awareness in the face of phishing attacks." *International Journal of Computer Trends and Technology* (2023).
- 55. Kuraku, D. S., & Kalla, D. (2023). Impact of phishing on users with different online browsing hours and spending habits. *International Journal of Advanced Research in Computer and Communication Engineering*, 12(10).
- 56. Kalla, D., & Samaah, F. (2023). Exploring Artificial Intelligence And Data-Driven Techniques For Anomaly Detection In Cloud Security. *Available at SSRN 5045491*.
- 57. Chandrasekaran, A., & Kalla, D. (2023). Heart disease prediction using chi-square test and linear regression. *Comput. Sci. Inform. Technol.*, 13, 135-146.
- 58. Kalla, D. (2022). AI-Powered Driver Behavior Analysis and Accident Prevention Systems for Advanced Driver Assistance. *International Journal of Scientific Research and Modern Technology (IJSRMT) Volume*, 1.
- 59. Rajiv, C., Mukund Sai, V. T., Venkataswamy Naidu, G., Sriram, P., & Mitra, P. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. *J Contemp Edu Theo Artific Intel: JCETAI/102*.
- 60. Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. *J Contemp Edu Theo Artific Intel: JCETAI/101*.
- 61. Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2020). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. *Journal of Artificial Intelligence and Big Data*, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
- 62. Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer's Disease (AD) in Healthcare. *Journal of Artificial Intelligence and Big Data*, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
- 63. Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. *Universal Library of Engineering Technology*, (Issue).
- 64. Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. *Available at SSRN 5459694*.
- 65. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. *International Journal of Emerging Trends in Computer Science and Information Technology*, 2(3), 70-80.
- 66. Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. *International Research Journal of Economics and Management Studies IRJEMS*, 1(2).
- 67. Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2022). Blockchain Technology in Supply Chain and Logistics: A Comprehensive Review of Applications, Challenges, and Innovations. *International Journal of Emerging Research in Engineering and Technology*, 3(3), 99-107.
- 68. Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Polu, A. R. (2022). Revolutionizing Marketing Analytics: A Data-Driven Machine Learning Framework for Churn Prediction. *International Journal of Artificial Intelligence, Data Science, and Machine Learning*, 3(2), 112-121.
- 69. Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS, WEAKNESSES, AND POTENTIAL APPLICATIONS.
- 70. Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. *Journal of Artificial Intelligence and Big Data*, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
- 71. Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer's Disease (AD) in Healthcare. *Journal of Artificial Intelligence and Big Data*, *2*(1), 141–152.DOI: 10.31586/jaibd.2022.1340