Golden Sun-Rise
International Journal of Multidisciplinary on Science and Management
IJMSM ISSN: 3048-5037/ Volume 1 Issue 2 Apr-Jun 2024 / Page No: 17-29
Paper Id: JMSM-V112P102/ D0i:10.71141/30485037/V112P102

Review Article

Zero Downtime Deployments: SRE Strategies for

Continuous Delivery

Deepak!

1Bangladesh University of Engineering and Technology, University in Dhaka, Bangladesh.

Received: 13 April 2024 Revised: 24 April 2024 Accepted: 02 May 2024 Published: 11 May 2024

Abstract - The idea of zero downtime deployments has now become imperative as organizations that are
into modern software development insist on continuity of service delivery and high availability. Site
Reliability Engineering (SRE) gives approaches for dealing with such deployments successfully so clients
interact with an uninterrupted service. Generally, this journal article discusses the main concepts worth
emphasizing in the SRE process and explains how to apply them to establish zero downtime deployments
in present-day business conditions. In the Lyft SRE case, blue-green deployments, canary release, feature
toggling, and rolling updates help SRE teams keep the system available for users but deliver new features
regularly. It provides a discussion of several issues, especially during zero downtime deployments,
including handling databases and the state of the applications. Moreover, we explore how setup and
deployment automation tools such as Kubernetes, Jenkins, and Continuous Integration/Continuous
Deployment (Cl1/CD) pipelines are used to automate setup and deployment processes. To fill this gap, the
article carries out a literature study of the various zero downtime strategies on system reliability,
performance and user experience and examines real-life case studies. Several approaches are suggested to
achieve highly flexible deployment, namely, monitoring, testing, and rollback procedures. Lastly, the
recent trend of zero downtime deployment concepts is discussed in the context of future enhancement of
deployment technologies to fulfill emerging requirements for real-time solutions.

Keywords - Zero downtime deployments, Site Reliability Engineering (SRE), Continuous Delivery (CD),
Blue-Green Deployments, Canary Releases, Feature Toggles, Database Migrations, Kubernetes, Jenkins,
CI/CD Pipelines.

I. INTRODUCTION

Continuous delivery, or CD, is a subset of DevOps that focuses on improvements in frequently delivering to
production application environments. Another aspect of a continuous delivery approach is to keep the

downtime during deployment to the barest level possible, and this is captured in zero downtime deployment.

[1-5] for companies, especially the ones offering vital services, continuity is of the essence, or, to put faintly, a
big concern. Maintenance, whether planned or unplanned, results in revenue loss, inconvenience to the users,
and the propensity to harm the image of the organization in question.

A. Second-Order Heading

Site Reliability Engineering (SRE): SRE stands for Site Reliability Engineering and is a practice area
that embraces engineering concepts from software engineering and applies them to infrastructure
and operational issues. It focuses on service dependability, accessibility, and productivity, especially
within manufacturing systems. The SRE role came from having a way of organizing the activities of
managing large-scale systems and a way of ensuring that the systems delivered met the user

http://ijmsm.prtechnologysolutions.in/

Deepak 1(2), 17-29, 2024
18

expectations. SRE aims to enhance communication and cooperation between the development and
operational teams to enhance the flow of CD.

Bridging
Development and
Operations

Site Reliability
Engineering (SRE)

Automation and Monitoring and
Tooling Observability

Culture of
Reliability and
Accountability

Incident
Management and
Postmortems

Performance
Optimization

Figure 1. Role of SRE in Continuous Delivery

Bridging Development and Operations: SRE is also used to coordinate and help to increase
cohesion between the development and operations teams. In the past, developers wrote code and
operations teams deployed and maintained the code in production services. SREs actively engage the
operational perspective deep into the developmental cycle by using measures that enhance the
developer’s flexibility. This is the specification of SLOs, SLIs, and error budgets, which make
reliability an aim that everyone easily understands.

Automation and Tooling: Automation is a fundamental building block of all SRE techniques and
plays a significant part in supporting continuous delivery. Everyone - SREs included - encourages
the use of automation for issues involving deployment, monitoring, and incidents. With CI/CD
pipelines, container orchestration (Kubernetes), and infrastructure as code (IaC), amongst other
solutions, SREs align companies’ deployment procedures. Those are the following benefits of
automation: the error rate is minimized, the release cycles are shorter, and the level of uniformity in
implementing code modifications is high.

Monitoring and Observability: Since SRE is a collection of best practices, monitoring and
observability play perhaps the most pivotal roles in Continuous Delivery. SREs put in place elaborate
systems designed to monitor the condition and functionality of an application as it runs. Metrics, logs,
and traces become insights into how the system is behaving and hence, SREs use this information to
detect a problem before it becomes severe. This monitoring approach is proactive in its nature,
helping quickly identify an incident and respond to it while keeping the deployment processes
untouched.

Incident Management and Postmortems: They cannot be over-emphasized when it comes to
managing incidents that are so key in enhancing the reliability of services whenever there is
Continuous Delivery. They devise procedures for organizing and handling incidents that occur during
a deployment, such as diagnosis and rectification. They hold postmortem meetings whereby they
review an occurrence, come up with findings on the event’s causes, and how to avoid future
occurrences. This focus on ongoing improvement promotes fine-tuning of the deployment processes
and improves the system reliability.

Performance Optimization: One more crucial area implemented into the concept of Continuous
Delivery by SREs is performance optimization. SREs are to guarantee that an application satisfies
performance requirements, which is of strategic importance to the users. They observe system

Deepak 1(2), 17-29, 2024
19

performance; understand where friction exists, and find ways to increase the efficiency of time
response and apparatus usage. This focus on performance guarantees that newer features and
updates do not have a negative impact on user experience, thus boosting the successful rates of these
implementations.

e Culture of Reliability and Accountability: SRE shapes an organizational culture that is based on
reliability and ensures that organizations deliver quality services. In other words, SREs play a key
role because shared accountability for availability helps software development teams prioritize
operational issues. This change in culture results in proper thinking through features and their
consequent implementation, which positively impacts system reliability and stability. SRE practices
help the organization learn from failure and enhance the way teams are able to undertake changes in
deployment processes in the future.

B. Importance of Zero Downtime Deployments

Zero Downtime Deployments |

Enhanced User Experience |

Increased Business Agility |

Reduced Risk of Deployment Failures |

Improved Operational Efficiency |

Better Performance Metrics |

Strengthened Collaboration Between Teams |

Competitive Advantage |

Figure 2. Importance of Zero Downtime Deployments

e Zero Downtime Deployments: Zero downtime can be defined as the process of updating
applications or services to the latest version without interrupting users and services. In the present
context of functioning in digital space, focusing on the availability of services at the time of updates is
not a luxury but a necessity because users’ expectations are significantly higher than before. Zero
downtime deployment is becoming popular among companies to create a better customer interface,
retain market share, and increase productivity.

e Enhanced User Experience: Another advantage of zero downtime deployments is the
enhancements of the users’ user experience. Clients, on their part, expect to have an easy time
accessing the applications without any hitches, much more during busy hours. As outlined above,
through following zero downtime approaches, organizations are in a position to continue providing
their services and ensure they have quick responses even in moments when they are carrying out
updates. One catches the continuity that contributes to the development of consumers’ confidence
and satisfaction and hence is likely to have high customer loyalty and a positive attitude towards the
brand.

e Increased Business Agility: Actually, zero downtime deployments enable organizations to increase
the flexibility of their business processes. Companies can develop updates, fixes, and new features
that can be released as frequently as needed as a reaction to market, customers’ feedback and

Deepak 1(2), 17-29, 2024
20

competitors by using micro-updates. Globalization, increasing competition and changing customer
needs make it possible for organizations to compete, create new offerings, and deliver value to
customers with great speed.

e Reduced Risk of Deployment Failures: Existing practices in deploying applications usually have
certain levels of risks due to potential disruptions and slow service. For this reason, zero downtime
deployments act as a prevention measure since the organization can implement features gradually,
assess their effects and revert to previous positions if problems occur while users are still unaware.
What it also does is not only improve the resilience of the system but also ease the amount of stress
that is normally seen in the deployments so that teams scale with confidence.

e Improved Operational Efficiency: Zero downtime deployments impact operational efficiencies
because they help to reduce release cycles. Contract-based solutions, continuous integration, and
continuous delivery (CI/CD) pipelines for automated software implementation. This efficiency
reduces the time needed to complete the maintenance activities and has left the teams to work more
strategically. Consequently, there is a better distribution of organizational resources, hence
increasing its productivity.

e Better Performance Metrics: High-performance levels are important during deployments,
especially because they would be keen on service delivery. Some best practices regarding zero
downtime deployment entail lots of monitoring and testing to ensure that the deployed application
will not run optimally at any given instance. Organizations can test and validate the performance
before a full-blown implementation through the blue-green deployments and about canary release
methodologies. This preventive approach to performance management ensures that problems do not
develop and affect users.

o Strengthened Collaboration between Teams: Zero downtime deployments can only be done by
involving the development, operations and quality assurance teams. These cross-functional teams
promote ownership of systems and ensure everyone is accountable for system reliability and
performance. In their task of devising, implementing, and evaluating these deployment strategies,
different teams gain broader insights into each other’s tasks and concerns. In the end, this
collaboration helps achieve better communication, coordination and integration in the organization.

e Competitive Advantage: With customer expectations and competitor pressure rising, the ability to
put out updates fast and efficiently is more desirable. Those organizations that can implement zero
downtime deployments are in a position to create a competitive advantage by being able to
continuously meet the expectations of consumers while at the same time having very little
disruption. Such advantages seamlessly can be channeled to enhanced market share, consumer
loyalty and hence better performance financially due to consumers shifting to services that increase
their reliability and usability.

II. LITERATURE SURVEY

A. Historical Context of Software Deployments

Thus, the techniques for software deployment have experienced dramatic changes over the years or the
past few decades. Prior to the new trend in service-oriented software, updating a program meant bringing
down the system and requiring a system downtime for maintenance. The problem with this approach was
bearable when the applications had few requests and the user bases had less density; however, as the
systems became more complex and covered worldwide, the problems of having scheduled downtimes
increased. [6-10] Companies have started to understand that downtime is highly damaging to the user
experience, the top line, and brand value. As a direct result, there was a clear move toward intensive use in
building zero downtime deployment procedures. This evolution was fueled by the ever-changing nature of
the business world and the constant need for availability and reliability due to the always-growing

Deepak 1(2), 17-29, 2024
21

importance of the digital aspect of various services. As computing shifted to the cloud and most applications
transitioned into using microservices, conventional deployment approaches fell short of meeting the evolving
needs of architecture, forcing organizations to look for new ways of achieving the execution of change in their
systems.

B. SRE Practices in Deployment Strategies

SRE best practice was born at Google as a groundbreaking discipline to cover the gap between software
development and IT operations. SRE, as a practice, focuses on increasing the system availability but, at the
same time, omits wasteful practices of extensive development and deployment. SRE aims to optimize the
performance and resilience of a service by collaborating between service automation, performance metric
monitoring, and post-incident analysis. The nature of zero downtime tells us that SRE teams use the following
effective strategies. Blue-Green Deployments is one of them, where two production environments, an active
environment (Blue) and a standby environment (Green), are maintained. This architecture enables teams to
change the idle environment, which will not necessarily disrupt the user. Once the new changes are live and
reviewed to determine that they work correctly, traffic transition from the blue environment to the green
environment is performed to create the least chance of failure. Another important practice applied by the SRE
is the so-called Canary Releases. It is a technique that involves providing successive minor releases of new
software to a limited number of customers and then to the masses. It is a gradual exposure that provides the
teams detailed insight into the stabilities and rates of the new release. If, for some reason, some problems
appear during the canary phase, the process can either be stopped or rolled back, which reduces the potential
problems for the general user population. Feature Toggles introduce a further extension of the development
in terms of deployment plans. This practice allows the teams to introduce new features into the codebase
without making them immediately available to users. However, features can be switched on or off depending
on the analysis of results gathered by the application and from users of the application. This is possible
because it's an approach that can be implemented in real time and makes it possible to adjust quickly to any
problems that may occur, but at the same time, the core system remains secure.

C. Modern Tools for Continuous Delivery

The use of zero downtime deployment strategies has been found to have received a substantial boost from
innovation in smart automation devices and gears. Kubernetes could be considered one of the most well-
known platforms in this area as it is an open-source container orchestration system that provides the setup
and management of containerized applications in automatic mode. Kubernetes is a solid container platform
that can support microservices architecture as a framework and provide features to adopt blue-green
deployment and canary release. It can also self-scale and balance the load, thus enabling applications to
address volatile user traffic while keeping the latter in check. Beyond Kubernetes, Jenkins has emerged as a
critical software tool in the circles of Continuous Integration/Continuous Delivery (CI/CD). This well-known
automation server alleviates the testing and deployment responsibilities so development squads can cater to
customers’ demands, delivering the incredible quality software applications they deserve without struggling
with time-consuming tasks. In a unique way, Jenkins supports the concept of continuous integration by
frequently testing and integrating changes in the main code frequently and also supports the feature of
continuous delivery that change is also delivered automatically to the production environments. This
automation minimizes the time and energy that would otherwise be spent on the deployments so that
updates are carried out efficiently. Furthermore, there are other CI/CD tools, including GitLab CI, CircleCI and
TravisCl, all of which offer enhanced features for performing build, test and deployment automation. These
modern tools make it possible to enhance organizational change in the context of zero downtime deployment
to build better practices and culture in software delivery. These tools will continue as important enablers for
organizations to deliver on the evolution of software development to address the rapidly growing digital
world’s needs while guaranteeing the resiliency and serviceability of their services.

Deepak 1(2), 17-29, 2024
22

III. METHODOLOGY

A. Overview of Zero Downtime Deployment Techniques

Blue-Green Deployments: Blue-green deployments are a popular strategy for achieving zero
downtime during software updates by maintaining two separate environments: one active station
(blue) and one not active (green). From this particular method, we find that the outgoing production
traffic is contained within the blue environment, which is used for staging and Beta, while the green
environment is used for staging area and preparing new updates. [11-15] After that, the update is
successfully deployed and tested, and then the production traffic is moved from the blue
environment to the green environment. This approach is especially preferred since the loss of time is
minimized as the user is not required to wait for a swap. From the configuration outlined, any
problems that may occur after the deployment can easily be solved by routing traffic back to the blue
environment, which gives an instant rollback method. Blue-green deployment is most effective when
used for a shift in a major version because it creates a testing phase in a production environment
before going live.

Canary Releases: Canary releases include releasing new software updates in small stages to users’
selected specifications before the release to many users at once. A method of testing where a
development team can expose selected sections of their application to real-life conditions in order to
check for constraints or bugs while still allowing normal usage by others, this technique is akin to the
practice of using canaries in coal mines to check for toxic gasses. A canary release first involves
running new code for a limited user base and comparing it with several important parameters such
as speed, failure rates, and further usage. In case nothing untoward befalls the first subset that
receives the update, this is launched out to the broader population. However, if there is trouble, the
deployment can either be stopped or reversed with the least severity. Since canary releases are a
completely controlled and very low-risk approach to continuous delivery, testing complex changes
and new features becomes very simple.

B. Automation and Cl/CD Pipelines

Automation is one of the main prerequisites for making zero downtime deployments possible, as it reduces
the role of discretion in the process. Using continuous integration and continuous deployment (CI/CD)
pipelines, organizations can minimize human intervention by eliminating all the repetitive tasks that are a
part of the software delivery life cycle, making the process more dependable and consistent.

Streamlining Deployment Workflows: Automated deployment workflow enables the development
and operations team to promote the code changes and deploy them to production environments.
This entails having pipelines that carry out the building, testing and deployment functions each time
the code changes. Through using and implementing tools including Jenkins, GitLab CI, and Circle CI,
the teams will have paths of specific stages, which are coding, compilation, unit testing, and the final
one is staging before the final product is released to the market. This minimizes the chances of some
disasters that normally accompany manual transmutations, and the reviews increase the chances of a
seamless transition to new versions.

Enhancing
Automated Monitoring and Collaboration
Testing Feedback Loops and
Communication

Streamlining

Deployment
Workflows

Figure 3. Automation and Cl/CD Pipelines

Deepak 1(2), 17-29, 2024
23

e Automated Testing: Automated testing is crucial when performing updates to the applications. It is
used to ensure the application is as good as it was when it was deployed. CI/CD pipelines can
combine automated testing to run a number of different tests, including unit tests, integration tests,
and end-to-end tests, to ensure that new code does not result in a variety of regressions or bugs.
These tests are quick and give information about the application’s stability; it will be solved earlier
before it reaches the production line. In addition, automated testing helps in realizing strategies such
as canary releases because you can be sure that the new feature will work right on a few users before
fully releasing it to the public.

e Monitoring and Feedback Loops: Monitoring again remains critical in the success of zero
downtime deployments, and automation is essential in the same as well. Prometheus and New Relic
allow the teams to monitor KPIs and user metrics in application monitoring systems. After
developing new updates, with the help of automatized alerting systems, teams can easily identify
such issues as anomalies or performance degradation. Such monitoring systems provide feedback
mechanisms for the swift detection and fixing of problems and increase the dependability of the
systems and the level of satisfaction among the users. Moreover, applying logging and monitoring
into the CI/CD pipeline guarantees the first view of performance data should performance issues
arrive as soon as a new code version is deployed.

e Enhancing Collaboration and Communication: Applying automation in the processes of CI/CD
results in better cooperation as well as mutual understanding for development, operational, and QA
workspaces. Having deployable artifacts as first-class objects in the branch and using initially similar
tools and workflows for deployment makes it easier for everyone to know the current state of the
code base for the team. This makes the work more de-siloed and encourages cross-functional
approaches in delivering software. Further, such pipelines can offer exhaustive reports and log files
that can be useful for post-deployment debriefs and increase the learning effects for the team.

C. Monitoring and Rollback Mechanisms

Another significant and equally important area in the field of so-called zero-downtime deployments is
controlling and rollback mechanisms. Apart from guaranteeing system stability during updates, they also
provide extra measures in case of deployment problems to bring about quick restoration.

Real-Time

Monitoring

-
-
-
-

Anomaly Detection
and Alerts

Rollback
Mechanisms

mated Rollback
Procedures

Post-Rollback
Analysis

Figure 4. Monitoring and Rollback Mechanisms

Deepak 1(2), 17-29, 2024
24

e Real-Time Monitoring: Monitoring during the actual application update is critical in ensuring
application stability and usability during the update process. Monitoring tools include Prometheus
and Grafana to enable teams to always look at system metrics and logs, application logs, or any user
interaction. Prometheus, a well-developed open-source monitoring system, periodically gathers
performance data from defined targets with a set time interval and stores it in the time-series
database. This is where Grafana comes in as a tool for building and viewing beautiful dashboards
based on metrics, allowing the necessary subject matter expertise and analytical skills to be
leveraged to their fullest in terms of quickly assessing the speeds and feeds of applications at
runtime. Some more of the metrics to be tracked while executing deployments include response time,
percentage of error, CPU usage, memory usage, disk 1/0, and more user experience metrics. Due to
the ability to visualize these measurable quantities in real time, teams can identify possible problems
and do it before the quality of user experience goes down. Predefined thresholds that are created
through alerts help the different teams to be on the lookout for any problem that could be
encountered during the deployment process.

e Anomaly Detection and Alerts: Besides basic health checkups, sophisticated mechanisms for
detecting anomalies can be employed with Said tools such as Elastic Stack (prior to the rebranding
referring to as ELK Stack), and Datadog enables users to process log data and comprehend
application metrics that can help to detect behavior shifts. By defining alerting systems that provide
warnings on these irregularities, the group can promptly address upcoming difficulties that do not
significantly impact the users.

¢ Rollback Mechanisms: This means that even with the best testing and monitoring, there is always
the chance that deployments will face question marks. This is where rollback mechanisms help us to
defuse the situation. A rollback is an extraction of the application to a previously known stable
version after a new or updated version has been released and it fails or possesses serious problems.
Organizations develop other measures, such as versioning and canary releases to ensure that it is
easy to perform rollbacks. Previous versions of the application are easily accessible, allowing teams
to instantly switch to the proven operational mode. Furthermore, using feature toggles enables some
teams to turn off new features while not having to fully revert the whole application. This approach
facilitates a staged implementation of changes that minimize the risk associated with new code
implementation.

e Automated Rollback Procedures: The CI/CD pipeline is highly effective to implement when
configuring automated rollback processes to increase deployment availability. For instance, when the
monitoring tools show that during or after the deployment, some of the important metrics measured
have gone beyond the defined thresholds, then scripts can normally roll back the system to the
previous version. Not only does this automation reduce the amount of time that needs to be taken to
recuperate from a failed deployment, but also the extent to which it might influence the users while
enabling various teams to provide service continuity.

o Post-Rollback Analysis: To ensure that future deployment fails are avoided, it is important to
engage in rollback assessment once a rollback has been done. It means scanning through logs, raw
data, feedback, etc., to gain retrospectives of events that have gone wrong by following a standard of
writing down the best practices about how and when teams should deploy in order to avoid making
the same mistake in the next release.

IV. RESULTS AND DISCUSSION

In this part, we design a sample zero downtime deployment process and then discuss the database
migration issues when applying the strategies.

A. Case Study: Zero Downtime Deployment at Scale
a. Overview of the Case Study

Deepak 1(2), 17-29, 2024
25

To illustrate our concepts in this case study, we examine one of the most famous ecommerce platforms that
serve tens of millions of users globally. This platform needs to overcome several difficulties in terms of
updating this resource without annoying its visitors, especially in high-cost seasons such as the holiday
season or great sales events. Before transitioning to zero downtime deployment strategies, the company was
characterized by long downtimes and disruptions that irritated customers and cost the firm a lot of money.
These include Reliability and IT Operations, Secure Software Lifecycle and Risk Management, Security
delivered via DevOps and Site Reliability Engineering (SRE) practices. Kubernetes is an open-source platform
that helps manage the deployment and running of applications, and these strategies were adopted to organize
zero downtime.

b. Implementation of Blue-Green Deployments and Canary Releases

The e-commerce platform’s deployment strategy primarily revolved around two key techniques: blue-green
deployment practices and canary release. These methodologies enabled the team to reduce the risks of new
features released and, at the same time, retain availability for a user.

¢ Blue-Green Deployments: The blue-green deployment strategy involves maintaining two separate
but identical environments. The system has one logged-in (the “blue” environment) and one logged-
off (the “green” environment). To deploy an update, the team applies the changes to the green
environment, which is not actively serving users, while the blue environment remains fully engaged.
This configuration is advantageous because the new application version can always be tested in a
green environment without affecting users. Once an environment has been put online and one is
certain that each was designed to work as planned, traffic is switched from the Blue environment to
the Green environment. This switch can often be made instantly, rarely disrupting business
operations or the internal flow. If there is any problem after deploying the service, then the team can
easily switch back to the blue environment, and the service will be back to its original format, causing
less disruption.

e Canary Releases: Besides the blue and green deploys, this platform aimed at using canary release
approaches to enable gradual feature deployments. This method works by distributing new features
to a small portion of users before the general distribution of the update happens. By doing this, the
platform will be able to observe the take-up of the new features from such a limited user base and
scale it up if successful or discard the campaign entirely. Canary is helpful for the organization since
it can detect certain problems ahead of time, effectively correcting them. For instance, when a new
feature leads to a sharp rise in error rates, the staff can either remove that feature for the canary
group or make changes after taking feedback from users. This not only minimizes the likelihood of a
large number of failures but also creates knowledge about users’ actions and preferences to adapt
further improvements.

e Metrics of Success: These are the analyses of how the strive towards zero downtime deployments
have led to improvements in other areas. The metrics tracked by the organization before and after
the deployment of these strategies:

Table 1. Blue-Green Deployments and Canary Releases

. Before After o
Metric Implementation Implementation Improvement (%)
Average Response Time 250 150 40
(ms)
User Satisfaction Score 70 90 28.57
Deployment Failure Rate 15 3 80

Deepak 1(2), 17-29, 2024

26
(%)
B Average Response Time (ms) B User Satisfaction Score
Deployment Failure Rate (%)
300
250
200
150
100
50 80
15
0
Before Implementation After Implementation Improvement (%)

Figure 5. Monitoring and Rollback Mechanisms

e Average Response Time: [t demonstrated a 40% improvement from the average response time for
user requests from 250mm to the new figure of 150mm. This cut helps to improve the making usage
interface to respond faster and also to have a quicker loading time.

e User Satisfaction Score: The user satisfaction score improved from 70 to 90, rising to 28.57%. This
increase is likely due to an increase in the trust users have in these brands, which leads directly to
customer loyalty.

e Deployment Failure Rate: This led to an overwhelming improvement in the deployment failure rate
from a high of 15% to as low as 3% when measured. Such an 80% cut means it dramatically reduced
the instances of failed deployments, thus improving the reliability of the new platform with new
deployment strategies.

These metrics show that the application of zero downtime deployment brings the following real
advantages. Focusing on continuity and managing the disruptiveness of changes also proved that besides the
technical advances in the e-commerce platform, customer satisfaction and trust have increased. The
simultaneous use of a blue-green deployment strategy and canary releases gave the necessary maneuvering
room in difficult situations and the ability to provide high-quality software updates to millions of users.

B. Challenges in Database Migrations
a. Overview of Database Migration Challenges
The problem of aiming at zero-downtime deployment usually faces vast difficulties, primarily in terms of
database relocation. This is because whenever there is a change in the structure of the database, it disrupts
service in the event that it is not well coordinated. In a database migration, several issues complicate the
process even further, all due to the fact that migrating requires consideration for application usability as well
as data coherence. This section examines the measures that are taken by the teams to prevent risks of
database migrations getting in the way of service availability.
e Backward-Compatible Schema Changes: A closely related recommendation to the previous one is
using the backward compatible side changes as one of the most efficient ways to guarantee
successful database migrations. This approach enables the new and old versions to be run parallel

Deepak 1(2), 17-29, 2024
27

during the migration process so that clients can access the old version if there is a system failure.
Ensuring compatibility would enable teams to reduce the inconvenience that system users might
experience as much as possible. For instance, when a column is planned to be deleted from a specific
database schema, it becomes possible for teams to include a new one alongside the current one. This
way of working also means that this application may continue to work during the transition from one
window to another because both columns can be viewed simultaneously. Users can use the
application as usual and will not realize any differentiation until all instances in the database have
been switched over to the new schema. This strategy offers relevant and essential flexibility when it
comes to migrating from the old schema to the newly created structure. This move can only be fully
done after thorough testing has been conducted and validation has been made.

e Dual Writes: The second successful strategy for handling database migrations is achieving the
distributed systems goal of replicating writes. In this strategy, the application is allowed to write into
both the old and new database schemas during a transition period. In this way, teams can collect data
in both places to avoid data loss, gradually eliminating the old schema. Yet, as it will be seen, dual
writes have their own difficulties. Data consistency is a considerable issue because data from two
different schemas must be consistent in order not to produce data integrity problems. To
accommodate this, it's possible for teams to need to bring in stuff like event sourcing or CDC. These
methods assist in making both the schemas have a similar copy of the data, carry out real-time
updates, and confirm data realism. On the one hand, having two indexes that write could be handy in
case of migrations, while on the second hand, having two indexes means there will always be latency
during the write process. Thus, performance becomes very important during this phase.

Table 2. Blue-Green Deployments and Canary Releases

Strategy Advantages Disadvantages
Backward-Compatible » Minimal disruption » Complexity in maintaining
Schema » Seamless transitions both schemas
» Data consistency » Increased latency during
Dual Writes » Gradual phasing of old writes
schema » Complexity in implementation
V. CONCLUSION

Out-of-band processing has transitioned from being a feature that can be said to be nice to have to a feature
that has become a standard for organizations aiming to achieve very high availability and good customer
experience in today’s complex digital environment. As more and more companies’ primary interfaces to the
public and their management systems are built and sustained online, any disruption means money lost and
images tarnished. That said, practices such as blue-green deployment, canary releases, and rolling updates
become essential for preserving the systemic reliability of service while applying updates and additional
features.

Blue-green deployment enables teams to have two copies of servers, and the traffic is only switched to the
new and improved environment after testing is done. This decreases the chances of experiencing service
interruptions while enabling the possibility of a contingency rollback. Likewise, canary releases allow teams
to allow new features to be gradually deployed to a subset of users in real-life applications where feedback is
gathered in real-time to ensure that no negative impact results when affecting a full release. However, these
methods not only improve the users’ satisfaction but also the culture of constant improvement of the
development teams.

Deepak 1(2), 17-29, 2024
28

Zero downtime deployment strategy has been greatly enhanced by Site Reliability Engineering (SRE)
practices. This approach differs from other team models because it promotes shared development and
operation and focuses on automated and highly reliable systems. This approach of deploying large releases
underpins the common system of no NOC being executed quickly while ensuring that user needs are met as
soon as possible without extra hazards linked to new releases in any organization. Also, modern automation
tools have made deployment easy and can be done in any environment due to the development of other tools.
CI/CD pipelines are tools that allow for automatic testing, validation, and deployment of changes to occur so
that the teams can deliver changes with a lot of speed.

As new technology arises and systems emphasize advanced features, an ever-escalating need for improved
and versatile deployment strategies will arise. These challenges will require organizations to pay attention
and be on the lookout to ensure they adapt new methods of deploying their architecture when necessary.
When businesses establish zero downtime deployments as norms, they extend their crisis readiness while
fostering markets’ edge. The deployment of the future is more about dynamism and creativity, and the
companies that aim for a zero downtime position will be much better prepared for the new world.

VI. REFERENCES

1. Gene Kim et al, The DevOps handbook: How to create world-class agility, reliability, and security in
technology organizations, IT Revolution Press, pp. 1-528, 2021. Google Scholar | Publisher

2. Michael Hiittermann, Introducing DevOps, DevOps for Developers, pp. 15-31, 2012. Google Scholar |
Publisher

3. Gene Kim, Kevin Behr, and George Spafford, The Phoenix Project: A Novel about IT, DevOps, and Helping
Your Business Win, 5t ed., IT Revolution, pp. 1-432, 2018. Google Scholar | Publisher

4. Jez Humble, and David Farley, Continuous Delivery Reliable Software Releases Through Build, Test, and
Deployment Automation, Pearson Education, pp. 1-512, 2010. Google Scholar | Publisher

5. Nicole Forsgren, Jez Humble, and Gene Kim, Accelerate: The Science of Lean Software and DevOps: Building
and Scaling High Performing Technology Organizations, IT Revolution Press, pp. 1-288, 2018. Google
Scholar | Publisher

6. Michael de Jong, Arie van Deursen, and Anthony Cleve, “Zero-Downtime SQL Database Schema Evolution
for Continuous Deployment,” IEEE/ACM 39t International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), Buenos Aires, Argentina, pp. 143-152, 2017. Google Scholar |
Publisher

7. Maxim Tuovinen, “Reducing Downtime During Software Deployment,” Tampere University of Technology,
Master of Science Thesis, pp. 1-59, 2015. Google Scholar | Publisher

8. A. Gavrilovska, K. Schwan, and V. Oleson, “A Practical Approach for 'Zero' Downtime in an Operational
Information System,” Proceedings 227 International Conference on Distributed Computing Systems,
Vienna, Austria, pp. 345-352, 2002. Google Scholar | Publisher

9. Len Bass, Ingo Weber, and Liming Zhu, DevOps A Software Architect's Perspective, Pearson Education, pp.
1-352, 2015. Google Scholar | Publisher

10. Pilar Rodriguez et al., “Continuous Deployment of Software Intensive Products and Services: A Systematic
Mapping Study,” Journal of Systems and Software, vol. 123, pp. 263-291, 2017. Google Scholar | Publisher

11. Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu, “Continuous Integration, Delivery and
Deployment: A Systematic Review on Approaches, Tools, Challenges and Practices,” IEEE Access, vol. 5,
pp- 3909-3943, 2017. Google Scholar | Publisher

12. Eberhard Wolff, A Practical Guide to Continuous Delivery, Addison-Wesley Professional, pp.1-288, 2017.
Google Scholar | Publisher

13. Sergejs Bobrovskis, and Aleksejs Jurenoks, “A Survey of Continuous Integration, Continuous Delivery and
Continuous Deployment,” BIR Workshops, pp. 1-9, 2018. Google Scholar | Publisher

14. Aleksi Hakli, “Implementation of Continuous Delivery Systems,” Tampere University of Technology, Master
of Science thesis, pp. 1-62, 2016. Google Scholar | Publisher

https://www.google.co.in/search?tbo=p&tbm=bks&q=The+DevOps+handbook:+How+to+create+world-class+agility,+reliability,+and+security+in+technology+organizations&num=10
https://www.google.co.in/books/edition/The_DevOps_Handbook/8kRDEAAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introducing+DevOps.+In+DevOps+for+Developers+&btnG=
https://link.springer.com/chapter/10.1007/978-1-4302-4570-4_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Phoenix+Project%3A+A+novel+about+IT%2C+DevOps%2C+and+helping+your+business+win&btnG=
https://books.google.co.in/books?id=_EnZAQAACAAJ&newbks=0&hl=en&source=newbks_fb&redir_esc=y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuous+delivery%3A+reliable+software+releases+through+build%2C+test%2C+and+deployment+automation&btnG=
https://www.google.co.in/books/edition/Continuous_Delivery/6ADDuzere-YC?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerate%3A+The+science+of+lean+software+and+devops%3A+Building+and+scaling+high+performing+technology+organizations&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerate%3A+The+science+of+lean+software+and+devops%3A+Building+and+scaling+high+performing+technology+organizations&btnG=
https://www.google.co.in/books/edition/Accelerate/Kax-DwAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Zero-downtime+SQL+database+schema+evolution+for+continuous+deployment&btnG=
https://ieeexplore.ieee.org/abstract/document/7965438
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reducing+Downtime+During+Software+Deployment+&btnG=
https://trepo.tuni.fi/handle/123456789/23377
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+practical+approach+for%E2%80%99zero%E2%80%99downtime+in+an+operational+information+system&btnG=
https://ieeexplore.ieee.org/abstract/document/1022272
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DevOps%3A+A+software+architect%E2%80%99s+perspective&btnG=
https://www.google.co.in/books/edition/DevOps/fcwkCQAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuous+deployment+of+software+intensive+products+and+services%3A+A+systematic+mapping+study&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121215002812
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuous+integration%2C+delivery+and+deployment%3A+a+systematic+review+on+approaches%2C+tools%2C+challenges+and+practices&btnG=
https://ieeexplore.ieee.org/abstract/document/7884954
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Continuous+integration%2C+delivery+and+deployment%3A+a+systematic+review+on+approaches%2C+tools%2C+challenges+and+practices&btnG=
https://www.google.co.in/books/edition/A_Practical_Guide_to_Continuous_Delivery/-0Y2DgAAQBAJ?hl=en&gbpv=1&dq=A+practical+guide+to+continuous+delivery&printsec=frontcover
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Continuous+Integration%2C+Continuous+Delivery+and+Continuos+Deployment&btnG=
https://ceur-ws.org/Vol-2218/paper31.pdf
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Implementation+of+continuous+delivery+systems+&btnG=
https://trepo.tuni.fi/bitstream/handle/123456789/24113/Hakli.pdf?sequence=3&isAllowed=y

15.

16.

17.

18.

19.

20.

21.

Deepak 1(2), 17-29, 2024
29

Antra Malhotra et al,, “Evaluate Canary Deployment Techniques Using Kubernetes, Istio, and Liquibase
for Cloud Native Enterprise Applications to Achieve Zero Downtime for Continuous Deployments,” I[EEE
Access, vol. 12, pp. 87883-87899, 2024. Google Scholar | Publisher

Praveen Sivathapandi, Debasish Paul, and Sharmila Ramasundaram Sudharsanam, “Enhancing Cloud-
Native CI/CD Pipelines with Al-Driven Automation and Predictive Analytics,” Australian Journal of
Machine Learning Research Applications, vol. 1, no. 1, pp. 226-265, 2021. Google Scholar | Publisher
Anirudh Mustyala, “CI/CD Pipelines in Kubernetes: Accelerating Software Development and
Deployment,” EPH - International Journal of Science and Engineering, vol. 8, no. 3, pp. 1-11, 2022. Google
Scholar | Publisher

SL de Clianna, Mechanism for Surveillance of Standstill and Rollback, Decisions on Negotiating Structure
and Plans for the Uruguay Round, 1987. Google Scholar | Publisher

Nathan E. Busch, and Joseph F. Pilat, “South African Rollback: Revisiting Monitoring and Verification
Lessons after 20 Years,” Comparative Strategy, vol. 33, no. 3, pp. 236-261, 2014. Google Scholar |
Publisher

A. Ayyagiri, P.K.G. Pandian, P. Goel, “Efficient Data Migration Strategies in Sharded Databases,” Journal of
Quantum Science and Technology, vol. 1, no. 2, pp. 72-87, 2024.

EP Bansleben, Database Migration: A Literature Review and Case Study, 2004. Google Scholar | Publisher

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluate+Canary+Deployment+Techniques+using+Kubernetes%2C+Istio+and+Liquibase+for+Cloud+Native+Enterprise+Applications+to+Achieve+Zero+Downtime+for+Continuous+Deployments&btnG=
https://ieeexplore.ieee.org/abstract/document/10560002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Cloud-Native+CI%2FCD+Pipelines+with+AI-Driven+Automation+and+Predictive+Analytics&btnG=
https://sydneyacademics.com/index.php/ajmlra/article/view/125
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CI%2FCD+Pipelines+in+Kubernetes%3A+Accelerating+Software+Development+and+Deployment&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CI%2FCD+Pipelines+in+Kubernetes%3A+Accelerating+Software+Development+and+Deployment&btnG=
http://ephijse.com/index.php/SE/article/view/238
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mechanism+for+Surveillance+of+Standstill+and+Rollback&btnG=
https://heinonline.org/HOL/LandingPage?handle=hein.journals/intlm26&div=74&id=&page=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=South+African+rollback%3A+Revisiting+monitoring+and+verification+lessons+after+20+years&btnG=
https://www.tandfonline.com/doi/abs/10.1080/01495933.2014.897132
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Database+Migration%3A+A+Literature+Review+and+Case+Study&btnG=
https://cdr.lib.unc.edu/concern/masters_papers/cz30px50v

