Citation:
Guru Pramod Rusum, "Green ML: Designing Energy-Efficient Machine Learning Pipelines at Scale" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 2, pp. 49-61, 2024.
Abstract:
Indeed, the energy consumption behind Machine Learning (ML) models and applications is surpassing at an astonishing rate as the demand for said Machine Learning (ML) models and applications increases exponentially. Such a growth is troubling, given the ecological costs of training large-scale models like GPT, BERT and ResNet. The goal of this paper is to describe a systematic methodology that we have developed to design energy-efficient ML pipelines, maximizing performance and minimizing energy consumption. In this paper, we introduce Green ML, which provides such a methodology. We discuss major principles of design, optimization, and those interventions that could be performed at the system level to enforce sustainability throughout the ML lifecycle, including data preprocessing and training, deployment, and inference. The paper involves energy-aware sampling of data and Quantization-Aware Training (QAT) data, Neural Architecture Search (NAS), and hardware information, as well as model pruning. We also examine the effect of different training frameworks and hardware accelerators on energy efficiency. We benchmark conventional and optimized pipelines, using a complete benchmarking suite regarding energy consumption, carbon footprint, and precision. We develop a modular framework that enables the creation of energy-efficient ML architectures and facilitates empirical studies, demonstrating that up to a 60% energy reduction can be achieved with a less than 5% decrease in model accuracy. A detailed overview of recent sustainable ML techniques, their comparative effectiveness, and recommendations for developing a green ML pipeline for the future are also included in the paper. What we do is a push towards introducing energy-efficient ideas at the industry level and assisting policymakers in developing green AI policies.
Keywords: Green ML, Machine Learning Pipelines, Quantization, Model Pruning, Hardware-aware NAS.
References:
1. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., ... & Kalenichenko, D. (2018). Quantization and training of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2704-2713).
2. Krishnamoorthi, R. (2018). Quantizing deep convolutional networks for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342.
3. Banner, R., Nahshan, Y., & Soudry, D. (2019). Post-training 4-bit quantization of convolutional networks for rapid deployment. Advances in Neural Information Processing Systems, 32.
4. Han, S., Pool, J., Tran, J., & Dally, W. (2015). Learning both weights and connections for an efficient neural network. Advances in Neural Information Processing Systems, 28.
5. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., & Zhang, C. (2017). Learning efficient convolutional networks through network slimming. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2736-2744).
6. Strubell, E., Ganesh, A., & McCallum, A. (2020, April). Energy and Policy Considerations for Modern Deep Learning Research. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 09, pp. 13693-13696).
7. Gale, T., Elsen, E., & Hooker, S. (2019). The state of sparsity in deep neural networks. arXiv preprint arXiv:1902.09574.
8. Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531.
9. Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.
10. Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., ... & Liu, Q. (2019). Tinybert: Distilling Bert for natural language understanding. arXiv preprint arXiv:1909.10351.
11. Jouppi, N. P., Yoon, D. H., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G., ... & Patterson, D. (2021, June). Ten lessons from three generations shaped Google’s tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) (pp. 1-14). IEEE.
12. Yarally, T., Cruz, L., Feitosa, D., Sallou, J., & Van Deursen, A. (2023, May). Uncovering energy-efficient practices in deep learning training: Preliminary steps towards green AI. In 2023 IEEE/ACM 2nd International Conference on AI Engineering–Software Engineering for AI (CAIN) (pp. 25-36). IEEE.
13. Rao, A., Talan, A., Abbas, S., Dev, D., & Taghizadeh-Hesary, F. (2023). The role of natural resources in the management of environmental sustainability: Machine learning approach. Resources Policy, 82, 103548.
14. Wu, C. J., Raghavendra, R., Gupta, U., Acun, B., Ardalani, N., Maeng, K., ... & Hazelwood, K. (2022). Sustainable AI: Environmental implications, challenges and opportunities. Proceedings of Machine Learning and Systems, 4, 795-813.
15. Wang, H., Qu, Z., Zhou, Q., Zhang, H., Luo, B., Xu, W., ... & Li, R. (2021). A comprehensive survey on training acceleration for large machine learning models in IoT. IEEE Internet of Things Journal, 9(2), 939-963.
16. Abbass, M. A. B., & Hamdy, M. (2021). A generic pipeline for machine learning users in the energy and buildings domain. Energies, 14(17), 5410.
17. Srbinovski, B., Magno, M., Edwards-Murphy, F., Pakrashi, V., & Popovici, E. (2016). An energy-aware adaptive sampling algorithm for energy harvesting WSN with energy-hungry sensors. Sensors, 16(4), 448.
18. Yao, Z., Lum, Y., Johnston, A., Mejia-Mendoza, L. M., Zhou, X., Wen, Y., ... & Seh, Z. W. (2023). Machine learning for a sustainable energy future. Nature Reviews Materials, 8(3), 202-215.
19. Bender, A., Schneider, N., Segler, M., Patrick Walters, W., Engkvist, O., & Rodrigues, T. (2022). Evaluation guidelines for machine learning tools in the chemical sciences. Nature Reviews Chemistry, 6(6), 428-442.
20. Henderson, P., Hu, J., Romoff, J., Brunskill, E., Jurafsky, D., & Pineau, J. (2020). Towards the systematic reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning Research, 21(248), 1-43.
21. Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
22. Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
23. Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
24. Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
25. Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108
26. Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
27. Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
28. Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
29. Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105
30. Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03
31. Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
32. Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
33. Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
34. Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
35. Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107
36. Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108
37. Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111
38. Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
39. Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
40. Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
41. Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
42. Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
43. Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
44. Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
45. Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
46. Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
47. Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106
48. Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108
49. Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110
50. Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107
51. Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
52. Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
53. Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
54. Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design Strategy that Aligns with Business Objectives. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 53-61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107
55. Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111
56. Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109
57. Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
58. Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
59. Pappula, K. K., & Rusum, G. P. (2020). Custom CAD Plugin Architecture for Enforcing Industry-Specific Design Standards. International Journal of AI, BigData, Computational and Management Studies, 1(4), 19-28. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P103
60. Enjam, G. R., & Tekale, K. M. (2020). Transitioning from Monolith to Microservices in Policy Administration. International Journal of Emerging Research in Engineering and Technology, 1(3), 45-52. https://doi.org/10.63282/3050-922X.IJERETV1I3P106
61. Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
62. Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108
63. Enjam, G. R., & Chandragowda, S. C. (2021). RESTful API Design for Modular Insurance Platforms. International Journal of Emerging Research in Engineering and Technology, 2(3), 71-78. https://doi.org/10.63282/3050-922X.IJERET-V2I3P108
64. Pappula, K. K. (2022). Containerized Zero-Downtime Deployments in Full-Stack Systems. International Journal of AI, BigData, Computational and Management Studies, 3(4), 60-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P107
65. Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service Management. International Journal of Emerging Research in Engineering and Technology, 3(4), 63-74. https://doi.org/10.63282/3050-922X.IJERET-V3I4P108
66. Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107
67. Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI Visibility and Business Outcomes. International Journal of AI, BigData, Computational and Management Studies, 3(1), 79-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109
68. Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110
69. Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109
70. Pappula, K. K. (2023). Edge-Deployed Computer Vision for Real-Time Defect Detection. International Journal of AI, BigData, Computational and Management Studies, 4(3), 72-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P108
71. Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109
72. Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-922X.IJERET-V4I2P111
73. Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. International Journal of Emerging Research in Engineering and Technology, 4(4), 112-119. https://doi.org/10.63282/3050-922X.IJERET-V4I4P111
74. Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112
75. Pappula, K. K., & Rusum, G. P. (2021). Designing Developer-Centric Internal APIs for Rapid Full-Stack Development. International Journal of AI, BigData, Computational and Management Studies, 2(4), 80-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I4P108
76. Pedda Muntala, P. S. R. (2021). Integrating AI with Oracle Fusion ERP for Autonomous Financial Close. International Journal of AI, BigData, Computational and Management Studies, 2(2), 76-86. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I2P109
77. Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106
78. Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109
79. Pedda Muntala, P. S. R. (2022). Enhancing Financial Close with ML: Oracle Fusion Cloud Financials Case Study. International Journal of AI, BigData, Computational and Management Studies, 3(3), 62-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108
80. Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108
81. Anasuri, S. (2023). Synthetic Identity Detection Using Graph Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 87-96. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P110
82. Reddy Pedda Muntala, P. S., & Karri, N. (2023). Voice-Enabled ERP: Integrating Oracle Digital Assistant with Fusion ERP for Hands-Free Operations. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 111-120. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P111
83. Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111
84. Pedda Muntala, P. S. R., & Jangam, S. K. (2021). End-to-End Hyperautomation with Oracle ERP and Oracle Integration Cloud. International Journal of Emerging Research in Engineering and Technology, 2(4), 59-67. https://doi.org/10.63282/3050-922X.IJERET-V2I4P107
85. Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108
6B New Colony, Edamalaipatti Pudur, Tiruchirappalli.
IJMSM
International Journal of Multidisciplinary on Science and Management [IJMSM] is a ly double-blind peer-reviewed journal published by Golden Sun-Rise.
2024 © Golden Sun-Rise.