Citation:
Rami Reddy Kothamaram, Dinesh Rajendran, Venkata Deepak Namburi, Vetrivelan Tamilmani, Vaibhav Maniar, Aniruddha Arjun Singh Singh, "Predictive Analytics for Customer Retention in Telecommunications Using ML Techniques" International Journal of Multidisciplinary on Science and Management, Vol. 1, No. 1, pp. 45-58, 2024.
Abstract:
The telecom sector places a premium on accurate customer churn prediction (CCP) since long-term revenue viability and competitive advantage depend on innovative retention measures. This study presents a comprehensive machine learning (ML) framework to accurately predict customer churn using the Light Gradient Boosting Machine (LGBM), with a systematic comparative analysis against existing algorithms. The methodology employs a complete end-to-end pipeline, including data preprocessing such as cleaning, duplicate removal, encoding, and min-max scaling optimization, alongside advanced feature engineering. The proposed LGBM model is evaluated using consistent metrics on telecom customer data and compared to XGBoost, Support Vector Machine (SVM), and Logistic Regression. An efficient division between training and testing made sure that performance evaluations were thorough. In comparison to XGBoost (89%), SVM (92%), and Logistic Regression (82%), the suggested LGBM model achieved much better performance in the experiments, with ACC of 98.07%, PRE of 97.6%, REC of 98.7%, and an F1-score of 99.2%. This dramatic increase in performance is proof that LGBM can successfully process category telecoms data and identify intricate patterns in consumer behavior. The systematic preprocessing pipeline and feature engineering enhance model reliability and efficiency. This study provides telecom companies with a scalable solution for real-time churn prediction, enabling customized interventions to minimize customer loss and improve operational sustainability.
Keywords: Customer retention, Telecom customer churn prediction dataset, Explainable Artificial Intelligence SHAP, Machine learning, LGBM, XGBoost, SVM, Logistic regression.
References:
1. B. Huang, M. T. Kechadi, and B. Buckley, “Customer churn prediction in telecommunications,” Expert Syst. Appl., vol. 39, no. 1, pp. 1414–1425, Jan. 2012, doi: 10.1016/j.eswa.2011.08.024.
2. M. M. Akbar and N. Parvez, “Impact of Service Quality, Trust, and Customer Can Service Quality, Trust, and Customer Satisfaction on Customers Loyalty Satisfaction Engender Customers Loyalty,” vol. 29, no. 1, pp. 24–38, 2009.
3. C. P. Wei and I. T. Chiu, “Turning telecommunications call details to churn prediction: a data mining approach,” Expert Syst. Appl., vol. 23, no. 2, pp. 103–112, Aug. 2002, doi: 10.1016/S0957-4174(02)00030-1.
4. T. Vafeiadis, K. I. Diamantaras, G. Sarigiannidis, and K. C. Chatzisavvas, “A comparison of machine learning techniques for customer churn prediction,” Simul. Model. Pract. Theory, vol. 55, pp. 1–9, Jun. 2015, doi: 10.1016/j.simpat.2015.03.003.
5. H. Hwang, T. Jung, and E. Suh, “An LTV model and customer segmentation based on customer value: a case study on the wireless telecommunication industry,” Expert Syst. Appl., vol. 26, no. 2, pp. 181–188, Feb. 2004, doi: 10.1016/S0957-4174(03)00133-7.
6. D. D. Rao, “Multimedia Based Intelligent Content Networking for Future Internet,” in 2009 Third UKSim European Symposium on Computer Modeling and Simulation, IEEE, 2009, pp. 55–59. doi: 10.1109/EMS.2009.108.
7. M. C. Mozer, R. Wolniewicz, D. B. Grimes, E. Johnson, and H. Kaushansky, “Predicting subscriber dissatisfaction and improving retention in the wireless telecommunications industry,” IEEE Trans. Neural Networks, vol. 11, no. 3, pp. 690–696, May 2000, doi: 10.1109/72.846740.
8. A. Amin, F. Al-Obeidat, B. Shah, A. Adnan, J. Loo, and S. Anwar, “Customer churn prediction in telecommunication industry using data certainty,” J. Bus. Res., vol. 94, pp. 290–301, Jan. 2019, doi: 10.1016/j.jbusres.2018.03.003.
9. S. S. S. Neeli, “Optimizing Database Management with DevOps: Strategies and Real-World Examples,” J. Adv. Dev. Res., vol. 11, no. 1, pp. 1–9, 2020.
10. S. Sesha and S. Neeli, “Real-Time Data Management with In-Memory Databases: A Performance-Centric Approach,” J. Adv. Dev. Res., vol. 11, no. 2, pp. 1–8, 2020.
11. S. Y. Hung, D. C. Yen, and H. Y. Wang, “Applying data mining to telecom churn management,” Expert Syst. Appl., vol. 31, no. 3, pp. 515–524, Oct. 2006, doi: 10.1016/j.eswa.2005.09.080.
12. M. Bruhn and M. A. Grund, “Theory, development and implementation of national customer satisfaction indices: The Swiss Index of Customer Satisfaction (SWICS),” Total Qual. Manag., vol. 11, no. 7, pp. 1017–1028, Sep. 2000, doi: 10.1080/09544120050135542.
13. S. Pahune, “Sensor Data Collection and Performance Evaluation Using A TK1 Board,” Univ. Memphis Digit. Commons, pp. 1–80, 2019.
14. V. Maruthi and L. Ganesh, “Observability-Driven SRE Practices for Proactive Database Reliability and Rapid Incident Response,” Int. J. Recent Innov. Trends Comput. Commun., pp. 32–38, 2019.
15. I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, “A Machine Learning Based Classification Method for Customer Experience Survey Analysis,” Technologies, vol. 8, no. 4, Dec. 2020, doi: 10.3390/technologies8040076.
16. L. T. Khrais, “Role of Artificial Intelligence in Shaping Consumer Demand in E-Commerce,” Futur. Internet, vol. 12, no. 12, Dec. 2020, doi: 10.3390/fi12120226.
17. B. Larivière and D. Van den Poel, “Predicting customer retention and profitability by using random forests and regression forests techniques,” Expert Syst. Appl., vol. 29, no. 2, pp. 472–484, Aug. 2005, doi: 10.1016/j.eswa.2005.04.043.
18. A. Kushwaha, P. Pathak, and S. Gupta, “Review of optimize load balancing algorithms in cloud,” Int. J. Distrib. Cloud Comput., vol. 4, no. 2, pp. 1–9, 2016.
19. S. R. Labhsetwar, “Predictive Analysis of Customer Churn in Telecom Industry Using Supervised Learning,” ICTACT J. Soft Comput., vol. 10, no. 2, pp. 2054–2060, Jan. 2020, doi: 10.21917/ijsc.2020.0291.
20. M. Rahman and V. Kumar, “Machine Learning Based Customer Churn Prediction In Banking,” in 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), IEEE, Nov. 2020, pp. 1196–1201. doi: 10.1109/ICECA49313.2020.9297529.
21. Y. He, Y. Xiong, and Y. Tsai, “Machine Learning Based Approaches to Predict Customer Churn for an Insurance Company,” in 2020 Systems and Information Engineering Design Symposium (SIEDS), IEEE, Apr. 2020, pp. 1–6. doi: 10.1109/SIEDS49339.2020.9106691.
22. I. Ullah, B. Raza, A. K. Malik, M. Imran, S. U. Islam, and S. W. Kim, “A Churn Prediction Model Using Random Forest: Analysis of Machine Learning Techniques for Churn Prediction and Factor Identification in Telecom Sector,” IEEE Access, vol. 7, pp. 60134–60149, 2019, doi: 10.1109/ACCESS.2019.2914999.
23. J. Mandák and J. Hančlová, “Use of logistic regression for understanding and prediction of customer churn in telecommunications,” Statistika, vol. 99, no. 2, pp. 129–141, 2019.
24. K. Eria and B. P. Marikannan, “Systematic Review of Customer Churn Prediction in the Telecom Sector,” J. Appl. Technol. Innov., vol. 2, no. 1, pp. 7–14, 2018.
25. A. K. Ahmad, A. Jafar, and K. Aljoumaa, “Customer churn prediction in telecom using machine learning in big data platform,” J. Big Data, vol. 6, no. 1, Dec. 2019, doi: 10.1186/s40537-019-0191-6.
26. N. V. Dharwadkar and P. S. Patil, “Customer retention and credit risk analysis using ANN, SVM and DNN,” Int. J. Soc. Syst. Sci., vol. 10, no. 4, 2018, doi: 10.1504/IJSSS.2018.095601.
27. Y. Aleksandrova, “Application of machine learning for churn prediction based on transactional data (RFM analysis),” in International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, Jun. 2018, pp. 125–132. doi: 10.5593/sgem2018/2.1/S07.016.
28. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Big Text Data Analysis for Sentiment Classification in Product Reviews Using Advanced Large Language Models. International Journal of AI, BigData, Computational and Management Studies, 2(2), 55-65.
29. Gangineni, V. N., Tyagadurgam, M. S. V., Chalasani, R., Bhumireddy, J. R., & Penmetsa, M. (2021). Strengthening Cybersecurity Governance: The Impact of Firewalls on Risk Management. International Journal of AI, BigData, Computational and Management Studies, 2, 10-63282.
30. Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., & Gangineni, V. N. (2021). An Advanced Machine Learning Models Design for Fraud Identification in Healthcare Insurance. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 26-34.
31. Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., & Polam, R. M. (2021). Advanced Machine Learning Models for Detecting and Classifying Financial Fraud in Big Data-Driven. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 39-46.
32. Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2021). Enhancing IoT (Internet of Things) Security Through Intelligent Intrusion Detection Using ML Models. International Journal of Emerging Research in Engineering and Technology, 2(1), 27-36.
33. Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2021). Smart Healthcare: Machine Learning-Based Classification of Epileptic Seizure Disease Using EEG Signal Analysis. International Journal of Emerging Research in Engineering and Technology, 2(3), 61-70.
34. Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., & Kamarthapu, B. (2021). Big Data and Predictive Analytics for Customer Retention: Exploring the Role of Machine Learning in E-Commerce. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 26-34.
35. Penmetsa, M., Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2021). Next-Generation Cybersecurity: The Role of AI and Quantum Computing in Threat Detection. International Journal of Emerging Trends in Computer Science and Information Technology, 2(4), 54-61.
36. Polu, A. R., Vattikonda, N., Gupta, A., Patchipulusu, H., Buddula, D. V. K. R., & Narra, B. (2021). Enhancing Marketing Analytics in Online Retailing through Machine Learning Classification Techniques. Available at SSRN 5297803.
37. Polu, A. R., Buddula, D. V. K. R., Narra, B., Gupta, A., Vattikonda, N., & Patchipulusu, H. (2021). Evolution of AI in Software Development and Cybersecurity: Unifying Automation, Innovation, and Protection in the Digital Age. Available at SSRN 5266517.
38. Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., Narra, B., Patchipulusu, H., & Gupta, A. (2021). Integrating AI-Based Sentiment Analysis With Social Media Data For Enhanced Marketing Insights. Available at SSRN 5266555.
39. Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2021). INTEGRATING AI-BASED SENTIMENT ANALYSIS WITH SOCIAL MEDIA DATA FOR ENHANCED MARKETING INSIGHTS. Journal Homepage: http://www. ijesm. co. in, 10(2).
40. Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Narra, B., & Vattikonda, N. (2021). An Analysis of Crime Prediction and Classification Using Data Mining Techniques.
41. Rajiv, C., Mukund Sai, V. T., Venkataswamy Naidu, G., Sriram, P., & Mitra, P. (2022). Leveraging Big Datasets for Machine Learning-Based Anomaly Detection in Cybersecurity Network Traffic. J Contemp Edu Theo Artific Intel: JCETAI/102.
42. Sandeep Kumar, C., Srikanth Reddy, V., Ram Mohan, P., Bhavana, K., & Ajay Babu, K. (2022). Efficient Machine Learning Approaches for Intrusion Identification of DDoS Attacks in Cloud Networks. J Contemp Edu Theo Artific Intel: JCETAI/101.
43. Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2020). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
44. Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
45. Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2022). Designing an Intelligent Cybersecurity Intrusion Identify Framework Using Advanced Machine Learning Models in Cloud Computing. Universal Library of Engineering Technology, (Issue).
46. Vangala, S. R., Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., & Chundru, S. K. (2022). Leveraging Artificial Intelligence Algorithms for Risk Prediction in Life Insurance Service Industry. Available at SSRN 5459694.
47. Polam, R. M., Kamarthapu, B., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Vangala, S. R. (2021). Data Security in Cloud Computing: Encryption, Zero Trust, and Homomorphic Encryption. International Journal of Emerging Trends in Computer Science and Information Technology, 2(3), 70-80.
48. Gangineni, V. N., Pabbineedi, S., Penmetsa, M., Bhumireddy, J. R., Chalasani, R., & Tyagadurgam, M. S. V. Efficient Framework for Forecasting Auto Insurance Claims Utilizing Machine Learning Based Data-Driven Methodologies. International Research Journal of Economics and Management Studies IRJEMS, 1(2).
49. Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., Buddula, D. V. K. R., & Patchipulusu, H. H. S. (2022). Blockchain Technology in Supply Chain and Logistics: A Comprehensive Review of Applications, Challenges, and Innovations. International Journal of Emerging Research in Engineering and Technology, 3(3), 99-107.
50. Narra, B., Vattikonda, N., Gupta, A. K., Buddula, D. V. K. R., Patchipulusu, H. H. S., & Polu, A. R. (2022). Revolutionizing Marketing Analytics: A Data-Driven Machine Learning Framework for Churn Prediction. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(2), 112-121.
51. Polu, A. R., Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Vattikonda, N., & Gupta, A. K. BLOCKCHAIN TECHNOLOGY AS A TOOL FOR CYBERSECURITY: STRENGTHS, WEAKNESSES, AND POTENTIAL APPLICATIONS.
52. Bhumireddy, J. R., Chalasani, R., Tyagadurgam, M. S. V., Gangineni, V. N., Pabbineedi, S., & Penmetsa, M. (2022). Big Data-Driven Time Series Forecasting for Financial Market Prediction: Deep Learning Models. Journal of Artificial Intelligence and Big Data, 2(1), 153–164.DOI: 10.31586/jaibd.2022.1341
53. Nandiraju, S. K. K., Chundru, S. K., Vangala, S. R., Polam, R. M., Kamarthapu, B., & Kakani, A. B. (2022). Advance of AI-Based Predictive Models for Diagnosis of Alzheimer’s Disease (AD) in Healthcare. Journal of Artificial Intelligence and Big Data, 2(1), 141–152.DOI: 10.31586/jaibd.2022.1340
54. Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., & Gangineni, V. N. (2023). Scalable Deep Learning Algorithms with Big Data for Predictive Maintenance in Industrial IoT. International Journal of AI, BigData, Computational and Management Studies, 4(1), 88-97.
55. Chalasani, R., Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., & Bhumireddy, J. R. (2023). Detecting Network Intrusions Using Big Data-Driven Artificial Intelligence Techniques in Cybersecurity. International Journal of AI, BigData, Computational and Management Studies, 4(3), 50-60.
56. Vangala, S. R., Polam, R. M., Kamarthapu, B., Penmetsa, M., Bhumireddy, J. R., & Chalasani, R. (2023). A Review of Machine Learning Techniques for Financial Stress Testing: Emerging Trends, Tools, and Challenges. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 40-50.
57. Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., Tyagadurgam, M. S. V., Gangineni, V. N., & Pabbineedi, S. (2023). A Survey on Regulatory Compliance and AI-Based Risk Management in Financial Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 46-53.
58. Bhumireddy, J. R., Chalasani, R., Vangala, S. R., Kamarthapu, B., Polam, R. M., & Penmetsa, M. (2023). Predictive Machine Learning Models for Financial Fraud Detection Leveraging Big Data Analysis. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 34-43.
59. Gangineni, V. N., Pabbineedi, S., Kakani, A. B., Nandiraju, S. K. K., Chundru, S. K., & Tyagadurgam, M. S. V. (2023). AI-Enabled Big Data Analytics for Climate Change Prediction and Environmental Monitoring. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 71-79.
60. Polam, R. M. (2023). Predictive Machine Learning Strategies and Clinical Diagnosis for Prognosis in Healthcare: Insights from MIMIC-III Dataset. Available at SSRN 5495028.
61. Narra, B., Gupta, A., Polu, A. R., Vattikonda, N., Buddula, D. V. K. R., & Patchipulusu, H. (2023). Predictive Analytics in E-Commerce: Effective Business Analysis through Machine Learning. Available at SSRN 5315532.
62. Narra, B., Buddula, D. V. K. R., Patchipulusu, H. H. S., Polu, A. R., Vattikonda, N., & Gupta, A. K. (2023). Advanced Edge Computing Frameworks for Optimizing Data Processing and Latency in IoT Networks. JOETSR-Journal of Emerging Trends in Scientific Research, 1(1).
63. Patchipulusu, H. H. S., Vattikonda, N., Gupta, A. K., Polu, A. R., Narra, B., & Buddula, D. V. K. R. (2023). Opportunities and Limitations of Using Artificial Intelligence to Personalize E-Learning Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(1), 128-136.
64. Madhura, R., Krishnappa, K. H., Shashidhar, R., Shwetha, G., Yashaswini, K. P., & Sandya, G. R. (2023, December). UVM Methodology for ARINC 429 Transceiver in Loop Back Mode. In 2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC) (pp. 1-7). IEEE.
65. Shashidhar, R., Kadakol, P., Sreeniketh, D., Patil, P., Krishnappa, K. H., & Madhura, R. (2023, November). EEG data analysis for stress detection using k-nearest neighbor. In 2023 International Conference on Integrated Intelligence and Communication Systems (ICIICS) (pp. 1-7). IEEE.
66. KRISHNAPPA, K. H., & Trivedi, S. K. (2023). Efficient and Accurate Estimation of Pharmacokinetic Maps from DCE-MRI using Extended Tofts Model in Frequency Domain.
67. Krishnappa, K. H., Shashidhar, R., Shashank, M. P., & Roopa, M. (2023, November). Detecting Parkinson's disease with prediction: A novel SVM approach. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
68. Shashidhar, R., Balivada, D., Shalini, D. N., Krishnappa, K. H., & Roopa, M. (2023, November). Music Emotion Recognition using Convolutional Neural Networks for Regional Languages. In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE) (pp. 1-7). IEEE.
69. Madhura, R., Krishnappa, K. H., Manasa, R., & Yashaswini, K. P. (2023, August). Slack Time Analysis for APB Timer Using Genus Synthesis Tool. In International Conference on ICT for Sustainable Development (pp. 207-217). Singapore: Springer Nature Singapore.
70. Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
71. Krishnappa, K. H., & Gowda, N. V. N. (2023, August). Dictionary-Based PLS Approach to Pharmacokinetic Mapping in DCE-MRI Using Tofts Model. In International Conference on ICT for Sustainable Development (pp. 219-226). Singapore: Springer Nature Singapore.
72. Madhura, R., Krutthika Hirebasur Krishnappa. et al., (2023). Slack time analysis for APB timer using Genus synthesis tool. 8th Edition ICT4SD International ICT Summit & Awards, Vol.3, 207–217. https://doi.org/10.1007/978-981-99-4932-8_20
73. Shashidhar, R., Aditya, V., Srihari, S., Subhash, M. H., & Krishnappa, K. H. (2023). Empowering investors: Insights from sentiment analysis, FFT, and regression in Indian stock markets. 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE), 01–06. https://doi.org/10.1109/AIKIIE60097.2023.10390502
74. Jayakeshav Reddy Bhumireddy, Rajiv Chalasani, Mukund Sai Vikram Tyagadurgam, Venkataswamy Naidu Gangineni, Sriram Pabbineedi, Mitra Penmetsa. Predictive models for early detection of chronic diseases in elderly populations: A machine learning perspective. Int J Comput Artif Intell 2023;4(1):71-79. DOI: 10.33545/27076571.2023.v4.i1a.169
6B New Colony, Edamalaipatti Pudur, Tiruchirappalli.
IJMSM
International Journal of Multidisciplinary on Science and Management [IJMSM] is a scholarly double-blind peer-reviewed journal published by Golden Sun-Rise.
2024 © Golden Sun-Rise.